Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes
In Quiet Regions and Coronal Holes?

Ellis Avalone, Sanjiv K. Tiwari, Navdeep K. Panesar, Ronald L. Moore, Amy Winebarger

1 University of Washington, Seattle, WA
2 Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA
3 Bay Area Environmental Research Institute, Petaluma, CA
4 NASA Marshall Space Flight Center, Huntsville, AL
5 Center for Space and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL

Abstract
Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from a few hours to days. The heating processes that make plumes form are still not fully understood, and most plumes involve the magnetic field at the base of the plume, but their intrinsic mechanisms remain mysterious. Raouafi et al. (2014) found from observation that plume bases are not simply regions of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of a converging magnetic flux at the plume’s base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether the convergence of flux is required for plume production. Here we present a series of images and magnetograms from a few hours to several days in quiet coronal regions and coronal holes to look for any differences in behavior for plumes in the two regions. To present these results, we give two examples, one plume in a coronal hole and one plume in a quiet region. Figures 3 and 4 show the evolution of the coronal hole plume and the quiet region plume, respectively, in both AIA 171 Å images and HMI magnetograms. The images and magnetograms show the formation/disappearance of each plume in 171 Å images coincides with base flux convergence/divergence in the magnetograms. Flux measurements of the coronal hole plume over its lifetime yield a best-fitting flux plot with a critical magnetic field strength of 300 Gauss (Figure 5), while the quiet region plume yields a critical magnetic field strength of 500 Gauss (Figure 6). Critical field strengths for all six plumes can be found in Table 1.

Introduction
Coronal plumes are bright, sporadic, fountain-like structures in the solar corona whose lifetimes range from a few hours to several days (Raouafi et al. 2014). AIA 171 Å images and HMI magnetograms were used to make measurements of luminosity in AIA 171 Å and flux. Luminosity are both normalized by exposure time and converted into magnetograms: Plots used to choose the critical magnetic field strength for the formation of a quiet region plume. Flux and luminosity are both normalized to easily compare profiles. We find that a threshold of 300 Gauss produces the best fitting curve for this plume. For reference, we show flux plots with thresholds of 100 and 500 Gauss, which produce poorer fits (left), and show the best fitting plot alone (right).

Methods
To perform our measurements, we used Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) extreme ultraviolet (EUV) images and SDO/Heliospheric and Magnetic Imager (HMI) line-of-sight magnetograms. SDO AIA provides high-resolution full-disk images in seven EUV wavelengths, with spatial resolution of 1.5 arcsec (Lemen et al., 2012), and HMI provides full-disk magnetograms with a spatial resolution of 0.5 arcsec per pixel (Scherer et al. 2012). We selected six isolated unipolar plumes using Helioviewer software (Mueller et al. 2017). AIA 171 Å channel, which detects plasma at temperatures around 60,000 K, was used to find plumes, whereas AIA 211 Å channel, which detects plasma at temperatures around 2,000,000 K, was used to confirm whether each plume was located in a quiet region or a coronal hole. AIA 211 Å images of two plumes, one in a coronal hole and one in a quiet region, are shown in Figure 2. AIA 171 Å data and HMI magnetogram data were then acquired using the Joint Science Operations Center (JSOC), and downloaded at a three minute cadence over the lifetime of each plume. Data was denoised, normalized by exposure time, and converted into maps using routines in SolarSoft IDL. These maps were then imported into python to take all measurements including luminosity in 171 Å and base flux over each plume’s lifetime.

Results
In order to find the critical magnetic field strength for each plume, we select potential minimum pixel values, or thresholds, for computing magnetic flux, and only measure the pixels above each threshold. We then use those thresholds to compare the profile of the measured base flux through that plume’s lifetime to the profile of the luminosity in 171 Å and find which threshold field strength generates the flux plot that most closely correlates to the luminosity plot. The critical magnetic field strength for each plume is the threshold value of the best-fitting flux plot for that plume. We compare critical magnetic field strengths and peak luminosities for plumes in quiet regions and coronal holes to look for any differences in behavior for plumes in the two regions. To present these results, we give two examples, one plume in a coronal hole and one plume in a quiet region. Figures 3 and 4 show the evolution of the coronal hole plume and the quiet region plume, respectively, in both AIA 171 Å images and HMI magnetograms. The images and magnetograms show the formation/disappearance of each plume in 171 Å images coincides with base flux convergence/divergence in the magnetograms. Flux measurements of the coronal hole plume over its lifetime yield a best-fitting flux plot with a critical magnetic field strength of 300 Gauss (Figure 5), while the quiet region plume yields a critical magnetic field strength of 500 Gauss (Figure 6). Critical field strengths for all six plumes can be found in Table 1.

Conclusions
Based on AIA and HMI observations of a sample of six unipolar plumes, we find that plume formation requires enough convergence of magnetic flux at the plume’s base to surpass a base line-of-sight magnetic field strength of approximately 300 – 500 Gauss. Dimming and disappearance of plumes can be directly linked to flux divergence. We also find that plumes in quiet regions and coronal holes have similar durations and have similar peak luminosities. We find, through random sampling of plumes, that plumes with obvious mixed polarity are rare. Our observations suggest that the EUV visibility of apparently-unipolar coronal plumes depends on the amount and strength of magnetic flux at their base for plumes of a single polarity, however we cannot rule out the possibility that there is hidden mixed polarity unresolved by HMI. Future generation solar telescopes e.g., DKIST and Solar-C, and advanced MHD simulations, should clarify this issue.

Acknowledgments
The authors thank the University of Alabama in Huntsville and NASA Marshall Space Flight Center for hosting the NSF 2017 AGU Fall Meeting. We would also like to thank the editorial staff for their hard work in making this special issue possible.

References
Hathaway, D., & Svalgaard, L. 2007, Reviews of Geophysics, 45, 209

Table 1: Location, duration, critical magnetic field strength, peak luminosity, and peak of the above-threshold flux for all six plumes. We can see that there is no significant difference between coronal hole plumes and quiet region plumes with respect to the response of the luminosity to the critical magnetic field strength of the base flux.