Verification and Enhancement of VIIRS Day-Night Band (DNB) Power Outage Detection Product

Angela Burke	extsuperscript{1}, Lori A Schultz	extsuperscript{1}, Olufemi Omitaomu	extsuperscript{2}, Andrew Molthan	extsuperscript{3}, Tony Cole	extsuperscript{2} and Robert Griffin	extsuperscript{1}

Department of Atmospheric Science, University of Alabama-Huntsville, Huntsville, AL

Oak Ridge National Laboratory, Oak Ridge, TN

NASA Marshall Space Flight Center, Huntsville, AL

Overview

This case study of Hurricane Matthew (October 2016) uses the NASA Short-term Prediction Research and Transition (SPoRT) Center DNB power outage product (using GSFC VIIRS DNB preliminary Black Marble product, Roman et al. 2017) and 2013 LandScan Global population data to look for correlations between the post-event % of normal radiance and the utility company-reported outage numbers (obtained from EAGLE-I).

Day-Night Band Product

- A Radiance Composite serves as a baseline for "normal" emissions.
- This study used the 20\textsuperscript{th} percentile in radiance emissions over 60 days to define the normal emissions.
- Post-event images are then compared to the composite to find the "percent-of-normal" emissions.
- Example: the DNB product tells the viewer a pixel is at 9\%, which means 95\% of the normal radiance is gone.

Thresholding Methodology

- This methodology uses the population in each pixel under a certain "percent-of-normal" threshold as a way to replicate "outages" as reported by utility companies.
- The population count contained in the pixels under the "percent-of-normal" threshold is summed by county.
- A "Customer Correction" number is then applied to the population count to estimate actual outages.

Challenges

- Both the DNB and LandScan Global 2013 products have a 1km resolution, while the lowest resolution for utility-reported outages is at the county level, which sacrifices precision in estimating outages.
- This methodology uses population as a proxy for utility customers, which does not take into account the fact that some utility customers will contribute more to the overall change in radiance than other customers.
- The DNB product is made from a VIIRS composite image, so the exact time the VIIRS imagery was taken is not known; which introduces a temporal source of error when compared to the utility-reported outages.
- Cloud cover is a large hindrance in monitoring radiance levels, especially for severe weather-related disasters.

Initial Results

- Cloud cover on Oct 9 accounts for "lag" in % of-normal threshold outages.
- 40\%-50\% thresholds in agreement with reported outages.
- Cloud cover on Oct 8 accounts for "lag" in % of-normal threshold outages.
- 70\%-80\% thresholds in agreement with reported outages.

Conclusions & Future Work

- The DNB product visually shows where the worst outages are located after a disaster, but the mismatch between the threshold-approximated outages and the actual outages remains an issue; a finer resolution of utility-reported outages is needed to quantify how many customers are contributing to the overall percent of radiance emissions.
- The VIIRS cloud mask is likely failing to identify thin clouds, which could cause lit pixels to appear "dimmer" and be attributable to "outage" spikes when no outages were reported.
- Additional instruments with DNB capabilities will improve the refresh time for the product, making it a more useful tool during disaster response and recovery; improvements to the product algorithm are ongoing for future research.

Acknowledgements: LandScan Global 2013, EAGLE-I Utility Data, and Customer Correction Numbers were provided by Oak Ridge National Laboratory. Funding provided in part by ORISE.