Using Deep Learning for Tropical Cyclone Intensity Estimation

Jeffrey “J.J.” Miller1, Manil Maskey2 and Todd Berendes1

1 The University of Alabama in Huntsville
2 NASA Marshall Space Flight Center
1. Motivation
2. Overview of current techniques
3. Data/Methodology
4. Results
5. Applications
6. Implications/future work
Motivation

- In situ observations from aircraft are not always available
- Tropical cyclone (TC) warning centers use different variants of satellite-based methods
- 10-20% uncertainty in post analyses when only satellite based estimates are available.
- Can deep learning be used to objectively and
Dvorak Technique

 - Uses enhanced IR and/or visible satellite imagery
 - Very subjective
 - Dependent on user expertise
- Objective Dvorak technique [1998]
 - Computer based algorithms to recognize patterns
 - Location of the eye must be identified by an expert
- Advanced Dvorak technique [2007]
 - Introduces regression equations

Current Methods

- Subjective
- Don’t generalize well
- Inconsistent
- Dependent on user expertise

Deep Learning

- Objective
- Generalize well
- No need for user expertise
- Large amounts of training data
Data

- US Naval Research Laboratory (NRL)
 - 2000 to 2016
 - ~30 minute interval
 - Pacific and Atlantic
 - Multiple geostationary satellites
 - GOES, Himawari, MTSAT, etc...
 - ~45,000 images

Source: https://www.nrlmry.navy.mil/tcdat/tc05/ATL/12L.KATRINA/ir/geo/1km/
Truth data

• Best tracks (HURDAT, HURDAT2)
 • Post-storm analysis of intensity, central pressure, location and size
 • 6 hour intervals
• Specially subsetted portion of the HURDAT2 dataset [Landsea and Franklin 2013]
 • Restricted to time periods that had airborne recon data
 • One hour intervals

Source: Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format, Landsea, C.W. and J.L. Franklin, Monthly Weather Review 2013 141:10, 3576-3592
Methodology

- Classes based on maximum sustained wind speed
 - 5 kts intervals
- Remove images where more than 20% of the pixels are black
- Split data into train/test/validation sets
- Augment images before training
 - Rotate, zoom

<table>
<thead>
<tr>
<th>Class (kts)</th>
<th>Train Set</th>
<th>Val. Set</th>
<th>Test Set</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>12053</td>
<td>4017</td>
<td>6886</td>
<td>22956</td>
</tr>
<tr>
<td>50-54</td>
<td>1318</td>
<td>439</td>
<td>751</td>
<td>2508</td>
</tr>
<tr>
<td>55-59</td>
<td>1459</td>
<td>486</td>
<td>833</td>
<td>2778</td>
</tr>
<tr>
<td>60-64</td>
<td>1116</td>
<td>372</td>
<td>636</td>
<td>2124</td>
</tr>
<tr>
<td>65-69</td>
<td>1163</td>
<td>387</td>
<td>664</td>
<td>2214</td>
</tr>
<tr>
<td>70-74</td>
<td>674</td>
<td>225</td>
<td>385</td>
<td>1284</td>
</tr>
<tr>
<td>75-79</td>
<td>794</td>
<td>265</td>
<td>453</td>
<td>1512</td>
</tr>
<tr>
<td>80-84</td>
<td>552</td>
<td>184</td>
<td>314</td>
<td>1050</td>
</tr>
<tr>
<td>85-89</td>
<td>650</td>
<td>216</td>
<td>370</td>
<td>1236</td>
</tr>
<tr>
<td>90-94</td>
<td>747</td>
<td>249</td>
<td>426</td>
<td>1422</td>
</tr>
<tr>
<td>95-99</td>
<td>458</td>
<td>152</td>
<td>260</td>
<td>870</td>
</tr>
<tr>
<td>100-104</td>
<td>688</td>
<td>229</td>
<td>391</td>
<td>1308</td>
</tr>
<tr>
<td>105-109</td>
<td>253</td>
<td>84</td>
<td>143</td>
<td>480</td>
</tr>
<tr>
<td>110-114</td>
<td>442</td>
<td>147</td>
<td>251</td>
<td>840</td>
</tr>
<tr>
<td>115-119</td>
<td>706</td>
<td>235</td>
<td>403</td>
<td>1344</td>
</tr>
<tr>
<td>120-124</td>
<td>268</td>
<td>89</td>
<td>153</td>
<td>510</td>
</tr>
<tr>
<td>125-129</td>
<td>360</td>
<td>120</td>
<td>204</td>
<td>684</td>
</tr>
<tr>
<td>130+</td>
<td>987</td>
<td>329</td>
<td>562</td>
<td>1878</td>
</tr>
<tr>
<td>Totals</td>
<td>24,688</td>
<td>8225</td>
<td>14085</td>
<td>46998</td>
</tr>
</tbody>
</table>
Architecture and Training

• Caffe reference network (CaffeNet)
 • Transfer learning
 • Trained on ImageNet
 • 5 convolutional layers
 • 3 fully connected layers
• Caffe
• NVIDIA Tesla P100
• ~90% validation accuracy

Adapted from: Hu et al. 2015 Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sensing, 7(11)
Preliminary Results

- Our model
 - Top-1 accuracy: **86.4%**
 - Achieved RMSE of **10.00 kt**
- Atlantic and Pacific
 - North Atlantic
 - Piñeros et al. (2011): **14.7 kt**
 - Ritchie et al. (2012): **12.9 kt**
 - North Pacific
 - Ritchie et al. (2014): **14.3 kt**

<table>
<thead>
<tr>
<th>Class (kts)</th>
<th>RMSE (kts)</th>
<th>MAE (kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49</td>
<td>3.84</td>
<td>0.4</td>
</tr>
<tr>
<td>50-54</td>
<td>12.62</td>
<td>6.03</td>
</tr>
<tr>
<td>55-59</td>
<td>14.3</td>
<td>6.61</td>
</tr>
<tr>
<td>60-64</td>
<td>14.06</td>
<td>6.26</td>
</tr>
<tr>
<td>65-69</td>
<td>11.78</td>
<td>4.47</td>
</tr>
<tr>
<td>70-74</td>
<td>15.7</td>
<td>6.91</td>
</tr>
<tr>
<td>75-79</td>
<td>14.2</td>
<td>5.68</td>
</tr>
<tr>
<td>80-84</td>
<td>12.19</td>
<td>4.57</td>
</tr>
<tr>
<td>85-89</td>
<td>15.87</td>
<td>5.8</td>
</tr>
<tr>
<td>90-94</td>
<td>12.03</td>
<td>4.71</td>
</tr>
<tr>
<td>95-99</td>
<td>14.07</td>
<td>4.73</td>
</tr>
<tr>
<td>100-104</td>
<td>12.65</td>
<td>4.53</td>
</tr>
<tr>
<td>105-109</td>
<td>14.21</td>
<td>6.52</td>
</tr>
<tr>
<td>110-114</td>
<td>13.43</td>
<td>4.21</td>
</tr>
<tr>
<td>115-119</td>
<td>13.54</td>
<td>3.64</td>
</tr>
<tr>
<td>120-124</td>
<td>19.89</td>
<td>7.16</td>
</tr>
<tr>
<td>125-129</td>
<td>11.76</td>
<td>3.62</td>
</tr>
<tr>
<td>130+</td>
<td>10.48</td>
<td>2.94</td>
</tr>
<tr>
<td>Total:</td>
<td>10.00:</td>
<td>2.88:</td>
</tr>
</tbody>
</table>
Activations

Input Image

Conv1 Activations
Ongoing Research

• Training a network where storms are unique to test/training set
• Include data from other sources
 • Microwave imagery
• Evaluate performance with different network architectures
 • Modality Hallucination
Intensity Estimation Service

• Develop a near real-time tropical cyclone intensity estimation service
 • Monitor NHC invest areas
 • Download images from invest area
 • Predict intensity (wind speed)
 • Store estimations in DB
 • Information can be retrieved through API

• Work with endusers to develop a website that will display past and present storm information along with estimated wind speed information and relevant overlays

• Utilize standards-based services (WFS, SOS, WCS, WMS, GeoJSON)
 • integration with AWIPS/N-AWIPS
Key Take Aways

• Deep learning can be used as a tool for TC intensity estimation
 • 86.4% top-1 accuracy
 • Performance should increase with more training data
 • Network appears to utilize storm shape and patterns, similar to current operational techniques
• Build a web-service to distribute storm data in near real time
• Dan Cecil (NASA MSFC)
• Derrick Herndon (CIMSS UW-Madison)
Thank you

Jeffrey “J.J.” Miller
jjm0022@uah.edu