Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

Alan G. Lee - SMART-NAS Test Bed Deputy Technical Lead
John E. Robinson
Jack (Chok) Lai
NASA Ames Research Center

November 14, 2017
Example Recent Human-in-the-Loop Simulation
Trajectory-Based Operations for Arrival

NASA Aircraft Simulators
Los Angeles En Route
NASA Lab
SoCal Terminal Area
LAX

Arrivals

SoCal Terminal Area
Los Angeles En Route
NASA Lab
NASA Aircraft Simulators

smart-nas test bed
Example of Future SMART-NAS Test Bed-enabled Simulation

Gate-to-Gate Simulation

NASA Lab

Arrival and Departures

Oakland En Route

NorCal Terminal Area

SFO Tower

Ramp Tower

SFO

Los Angeles En Route

SoCal Terminal Area

LAX

Arrivals

NASA Aircraft Simulators

NASA Lab

NASA Tower Simulator

FAA Lab
SMART-NAS Test Bed Goals

The SMART-NAS Test Bed will provide a test environment that will aid in:

• Performing Multiple-Air Traffic Management (ATM) Domain Evaluations

• Increasing Assessment Pace

• Collaborating with Stakeholders

• Testing During Concept Maturation

• Performing Live, Virtual and Constructive Operations
Outline

• SMART-NAS Test Bed Vision
• SMART-NAS Test Bed Implementation Status
• SMART-NAS Test Bed Utilization
• Next Steps
• Conclusion
SMART-NAS Test Bed Vision
Test Bed Requirements

1) Provide standardized environment to design, conduct, and analyze real-time simulations

2) Integrate real ATM systems, high-fidelity emulators, and aircraft without modification

3) Leverage advances in software assurance, cloud-computing, big data, and real-time analytics

4) Permit adaptability and scalability to future simulations

5) Deliver incremental capabilities with demonstrable value to early users
Test Bed Architecture

DDS – Data Distribution Service

Test Bed Visualization Services

UAS Traffic Management (UTM)

Test Bed Support Services

External Simulators

UAS Live Virtual Constructive-Distributed Environment (LVC-DE)

Stakeholder Tools

Traffic Generators

ATM Functional Services

GovCloud

Component A

Component B

Component C

Component D

Component X

Trajectory Generator

Scheduler

Conflict Detection

Conflict Resolution
Test Bed Elements and Capabilities

Support Services
- Web-based Services
- Scenario Generation
- Simulation and Asset Configuration
- Command, Control, Monitor, Archive
- Analysis Support
- Libraries

Live Data and Flight Assets
- Allow extension by NASA and Industry stakeholders
- Enable sharing of capabilities and simulation artifacts

ATM Automation
- Permit concurrent high-fidelity simulations
- Leverage historic data

Lab Infrastructure
- Connect geographically distributed capabilities

Real-Time ATM Concepts
- Incorporate fielded ATM and ATC systems
- Simulate current and alternative multiple ATM domain concepts

- Integrate live, virtual, and constructive operations

- Incorporate fielded ATM and ATC systems

- Simulate current and alternative multiple ATM domain concepts

- Connect geographically distributed capabilities

- Permit concurrent high-fidelity simulations
- Leverage historic data

- Support Services
- Web-based Services
- Scenario Generation
- Simulation and Asset Configuration
- Command, Control, Monitor, Archive
- Analysis Support
- Libraries

- Live Data and Flight Assets
- Allow extension by NASA and Industry stakeholders
- Enable sharing of capabilities and simulation artifacts

- ATM Automation
- Permit concurrent high-fidelity simulations
- Leverage historic data

- Lab Infrastructure
- Connect geographically distributed capabilities

- Real-Time ATM Concepts
- Incorporate fielded ATM and ATC systems
- Simulate current and alternative multiple ATM domain concepts

- Integrate live, virtual, and constructive operations

- Incorporate fielded ATM and ATC systems
- Simulate current and alternative multiple ATM domain concepts
- Connect geographically distributed capabilities
- Permit concurrent high-fidelity simulations
- Leverage historic data
Concept of Operations

1. User
2. Web Browser
3. Authentication
4. Scenario Library
5. Command, Control and Monitoring
6. FAA SWIM
7. ATM Data Warehouse
8. DDS Global Data Space
9. NextGen Applications
10. Traffic Generators

- Scenario Generator
- Web Server
- Application Server
- Authorization
- User Account
- Component Library
- Simulation Library
- Support Tools
 - Data Recording
 - Data Replay
 - Visualization
 - Analytics
SMART-NAS Test Bed
Implementation Status
Scenario Generation GUI
Simulation Configuration: GUI
Integration Example: SWIM, Traffic Generator, Conflict Detection, and Viewer
Simulation Configuration
Integration Example: SWIM, Traffic Generator, Conflict Detection, and Viewer
Test Bed Utilization

• SNTB Scenario Generation service
 • Used for two Human-in-the-Loop (HITL) simulations
 • Planned to be used by 2 other Projects

• Provided Live FAA SWIM Traffic Data Feed
 • Real Time Safety Monitoring
Next Steps

• Integrating Live Virtual Constructive simulation capability
• Working with Integrated Demand Management (IDM) Project - Automated Simulation Capability
• Expanding network capability
• Maturing current capabilities
Conclusion

The SMART-NAS Test Bed

• will be a collaborative, rapidly deployable, and distributed ATM simulation and test environment

• will provide a flexible and scalable architecture

• enable simulations spanning multiple-ATM domains

• is being developed incrementally for value to early users
Backup Slides
Program Overview

• Originally under: Shadow Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Project
• Continuing under: Air Traffic Management – Exploration (ATM-X)
• Phased development
 • 2014-2015 SMART-NAS Test Bed architecture NASA Research Agreements (NRAs) by four industry teams
 • 2015 In-house proof-of-concept demo of key technologies by Ames and Langley Research Centers
 • 2016-2020 Full-scale development focused on customer use cases