INTRODUCTION

Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO₂) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO₂ mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO₂ induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

RESEARCH QUESTIONS

- To what extent do changes in temperature, rainfall and CO₂ driven by a regional Spring drought affect land carbon fluxes and productivity?
- Does interactive phenology help to lengthen or shorten an agricultural drought?

METHODS

- Models: GEOS-5 AGCM with a newly instituted land-atmosphere CO₂ coupling; additional offline land only (Catchment-CN) simulations
- The 80-member ensembles of GEOS-5 simulations:
 1. CTRL: a control ensemble
 2. DryS (or DryL): an ensemble with an artificially imposed drought on Region S (or Region L) from APR to JUN, followed by a 3-month recovery period.

RESULTS

1. A Spring drought has a footprint on land carbon dynamics that persists during the recovery period, and affects the carbon productivity in neighboring areas mostly due to remote changes in temperature and water availability.
2. The carbon flux change due to the induced CO₂ fertilization effect acts only slightly to mitigate the meteorology effects.

Impact of a regional drought on terrestrial carbon fluxes and atmospheric carbon: Results from a coupled carbon cycle model

Eunjee Lee¹,², Randal D. Koster³, Lesley E. Oltt, Brad Weir¹,², Sarith Mahanama²,³, Yehui Chang¹,², and Fan-Wei Zeng²,³

¹ Universities Space Research Association, ² NASA Goddard Space Flight Center, ³ Science Systems and Applications, Inc.

INTRODUCTION

Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO₂) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO₂ mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO₂ induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.

RESEARCH QUESTIONS

- To what extent do changes in temperature, rainfall and CO₂ driven by a regional Spring drought affect land carbon fluxes and productivity?
- Does interactive phenology help to lengthen or shorten an agricultural drought?

METHODS

- Models: GEOS-5 AGCM with a newly instituted land-atmosphere CO₂ coupling; additional offline land only (Catchment-CN) simulations
- The 80-member ensembles of GEOS-5 simulations:
 1. CTRL: a control ensemble
 2. DryS (or DryL): an ensemble with an artificially imposed drought on Region S (or Region L) from APR to JUN, followed by a 3-month recovery period.

RESULTS

1. A Spring drought has a footprint on land carbon dynamics that persists during the recovery period, and affects the carbon productivity in neighboring areas mostly due to remote changes in temperature and water availability.
2. The carbon flux change due to the induced CO₂ fertilization effect acts only slightly to mitigate the meteorology effects.

Impact on a Remote Area (Eastern Side of the Region S example)

Impact on a Remote Area (Eastern Side of the Region S example)