Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

Manil Maskey and Rahul Ramachandran
NASA/MSFC

J.J. Miller
University of Alabama in Huntsville
Deep Learning

- A subfield of machine learning
- Algorithms inspired by function of the brain (ANN)
- Scales with amount of DATA (training)
- Powerful tool without the need for feature engineering
- Suitable for Earth Science applications
RECENT DEEP LEARNING SUCCESS

• Facebook
 ▪ Translates about 2 billion user posts per day in more than 40 languages
 ▪ Photo search and photo organization

• Microsoft
 ▪ Speech-recognition products: Bing voice search, X-Box voice commands
 ▪ Search rankings, photo search, translation systems

• Google
 ▪ Almost all services

• Medical Science
 ▪ Diagnosis Language translation

• Playing strategy games
• Self driving cars
WHAT IS NEEDED?

• One thing in common
 • Large number of data points needed to learn large number of parameters in the model that machines have to learn

• Barrier for using deep learning

• **Data Training Data** is the New Oil

• Manually creating labeled training data is bottleneck
EXAMPLES

<table>
<thead>
<tr>
<th></th>
<th>VGGNET</th>
<th>DeepVideo</th>
<th>GNMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Classify image</td>
<td>Classify video</td>
<td>Translate</td>
</tr>
<tr>
<td>Input Data</td>
<td>Image</td>
<td>Video</td>
<td>English Text</td>
</tr>
<tr>
<td>Output</td>
<td>1000 Classes</td>
<td>47 Classes</td>
<td>French Text</td>
</tr>
<tr>
<td># of Parameters</td>
<td>~140 million</td>
<td>~100 million</td>
<td>~380 million</td>
</tr>
<tr>
<td>Labeled Data Size</td>
<td>1.2 million images</td>
<td>1.1 million videos</td>
<td>6 million sentence pairs 340 million words</td>
</tr>
</tbody>
</table>
DEEP LEARNING FOR EARTH SCIENCE APPLICATIONS AT MSFC

• Hurricane intensity (wind speed) estimation
• Severe storm (hailstorm) detection .. Forecast?
• Transverse bands detection
• Dust climatology
• Phenomena identification
• Ephemeral water detection
<table>
<thead>
<tr>
<th>Application</th>
<th>Training Data Size ~</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurricane intensity (wind speed) estimation</td>
<td>49,000</td>
<td>Combining imagery with storm database</td>
</tr>
<tr>
<td>Severe storm (hailstorm) detection</td>
<td>93,000</td>
<td>Storm reports</td>
</tr>
<tr>
<td>Transverse bands detection</td>
<td>9,000</td>
<td>Manual</td>
</tr>
<tr>
<td>Dust climatology</td>
<td>8,000</td>
<td>Manual</td>
</tr>
<tr>
<td>Ephemeral water detection</td>
<td>650,000</td>
<td>Combining shapefiles and time series analysis</td>
</tr>
</tbody>
</table>
STRATEGIES?

• Data Augmentation
• Transfer Learning
• Permutation Invariance
• Data Programming
DATA AUGMENTATION

• For computer vision tasks
• Mirroring
• Random cropping
• Color shifting
• PCA
TRANSFER LEARNING

• Network gains knowledge from training data
• Compiled as “weights” of the network
• Weights can be extracted and then transferred to another network
• Instead of training network from scratch, “transfer” the learned features
• Pre-trained model
 ▪ Created by someone else to solve similar problem
• Ways to fine tune the model
 ▪ Feature extraction
 ▪ Architecture
 ▪ Train some – freeze some
USING PRE-TRAINED MODELS

- **Start from scratch**
- **Fine tune pre-trained model**
- **Fine tune lower layers of the pre-trained model**
- **Fine tune output layer of the pre-trained model**

- **Training Data Size**
- **Data similarity**
PERMUTATION INVARIANCE

• Example:

\[f(x_1, x_2, x_3) = f(x_2, x_1, x_3) = f(x_3, x_1, x_2) = ... \]

• Represent data that does not have spatial relationship
DATA PROGRAMMING

• Programmatic creation of training dataset

• User
 ▪ Provides unlabeled data
 ▪ Writes labeling functions (LFs) – weak supervision
 ○ expresses supervision strategies
 ▪ Chooses a discriminative model
WEAK SUPERVISION

• Domain rules/heuristics
• Existing ground-truth data that is not exact fit (distant supervision)
• Weak classifiers ("boosting")
• Non-expert annotations ("crowdsourcing")
• Information Extraction from Earth Science Literature
• Unstructured text
• Extract information: dataset usage, hypothesis validation, etc.
• No large labeled training dataset
• Various ontologies, vocabularies, and glossaries?
• Custom heuristics?
• Regular expressions
• Rule-of-thumb
• Negative label generation
STUDYING DUST EVENTS

Sample text:

“Meteorological conditions during **dust storms** were **analyzed** using **aerosol**.”

```python
def labelingFunction1(input):
    concept = (input.phenomenon,input.property)
    return 1 if concept in DOMAIN_KB else 0

def labelingFunction2(input):
    found = re.search(r'.*analyzed.*',input.text.between)
    return 1 if found else 0
```

Sample Labeling Functions to extract mentions of dust events and physical properties

- labelingFunction1: Leverage existing Earth Science knowledgebase (e.g., SWEET)
- labelingFunction2: Domain heuristics
SNORKEL

• Data programming framework
 ▪ Training data creation and management

• Creates a noisy training set – by applying LFs to data

• Learns a model of the noise (learns accuracy of LFs)

• Trains a noise-aware discriminative model
Labeled Training Data

<table>
<thead>
<tr>
<th>Application</th>
<th>Training Data Size ~</th>
<th>Methodology</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurricane intensity (wind speed) estimation</td>
<td>49,000</td>
<td>Combining imagery with storm database</td>
<td>Data Augmentation</td>
</tr>
<tr>
<td>Severe storm (hailstorm) detection</td>
<td>163,000</td>
<td>Storm reports</td>
<td>None</td>
</tr>
<tr>
<td>Transverse bands detection</td>
<td>9,000</td>
<td>Manual</td>
<td>Data Augmentation and Transfer Learning</td>
</tr>
<tr>
<td>Dust climatology</td>
<td>8,000</td>
<td>Manual</td>
<td>Data Augmentation and Transfer Learning</td>
</tr>
<tr>
<td>Ephemeral water detection</td>
<td>650,000</td>
<td>Combining shapefiles and timeseries analysis</td>
<td>None</td>
</tr>
</tbody>
</table>
PUBLISHING DATASET

• Should Earth science training dataset be published as traditional datasets?
• Catalog – NASA CMR?

Available Public Datasets on AWS

Geospatial and Environmental Datasets

Learn more about working with geospatial data on AWS at Earth on AWS.

• Landsat on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Landsat 8 satellite.
• Sentinel-2 on AWS: An ongoing collection of satellite imagery of all land on Earth produced by the Sentinel-2 satellite.
• GOES on AWS: GOES provides continuous weather imagery and monitoring of meteorological and space environment data across North America.
• SpaceNet on AWS: A corpus of commercial satellite imagery and labeled training data to foster innovation in the development of computer vision algorithms.
TAKEAWAYS

• Deep learning is ideal for “supervised” learning
• Algorithms can be fine tuned for customized applications
• Large labeled datasets fuel impressive classification accuracy
• Challenge:
 • Creating/Identifying/Accumulating large labeled datasets
• Addressing Limited Labeled Data
 • Many approaches – depends on application
Manil Maskey
manil.maskey@nasa.gov