Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

Manuela Girotto1,2, Rolf H. Reichle3, Gabrielle J. M. De Lannoy4, Matt Rodell2,5 (1NASA Goddard Space Flight Center, Greenbelt, MD, USA; 2U.SRA/GEOSTAR, Columbia MD, USA; 3KU Leuven, Department of Earth and Environmental Sciences, Heverlee, Belgium)

Motivation & Hypothesis

- **Soil moisture** plays a key role in weather & climate dynamics.
- Accurate estimates of soil moisture will enhance weather and climate forecast skill and will improve flood prediction and drought monitoring capability.
- We can improve soil moisture profile estimates by merging both SMOS and GRACE satellite based observations into a land surface model?

Measuring Soil Moisture from Space

Soil Moisture and Ocean Salinity (SMOS):
- L-band brightness temperature (Tb) at multiple incidence angles
- Launched Nov. 2009

Gravity Recovery and Climate Experiment (GRACE):
- Gravity observations to provide Terrestrial Water Storage (TWS) anomalies
- Launched Mar 2002

Pros:
- Tb depends on soil moisture
- Frequent obs. (1 obs./2-3 days)
- Good spatial resolution (~40 km)

Cons:
- Coarse temporal resolution (monthly)
- Coarse spatial resolutions (~300 km)

Modeling Soil Moisture

- Catchment Land Surface Model (LSM), GEOS-5:
 - Surface soil moisture [0-5 cm]
 - Root zone soil moisture [0-100 cm]
 - Groundwater, and TWS

radiative Transfer Model (RTM) to estimate Tb

Experiment specifics:
- From Jan. 2010 through Jan 2015
- CONUS domain spatial res. 36 km EASE2v2 grid
- MERRA-2 forcings [Selar et al. 2017]

Joint Assimilation Methods

- **Assimilated Obs:**
 - **GRACE:** TWS anomalies
 - **SMOS:** Tb Vertical and Horizontal Polarizations (TbV, TbH) at 40°

Fig. 4. Simplified flowchart of the joint GRACE-TWS and SMOS-Tb data assimilation (DA) system.

1) Run A: One month forecast ensemble integration with SMOS-Tb assimilation (SMOS run A)
2) **GRACE-DA:** Calculate model TWS observation prediction through spatial aggregation (model-to-observation grid) and temporal aggregation (daily to monthly). Calculate the increments via 3DEnKF analysis. Rewind the model to the beginning of the month and apply the GRACE increments (Girotto et al. 2016)
3) Run B: Integrate the model from the 1st to the last day and re-run SMOS-Tb assimilation (SMOS run B). Repeat for the following month.

Results: Validation

Blue colors: data assimilation (DA) is better than openloop (or model only, OL); **red colors:** OL better than DA

Results: Impact on Soil Moisture Profile

Fig. 7. column 1) typical monthly ensemble standard deviation (i.e., ensemble spread) of the openloop (i.e., no assimilation), and columns 2-4) reduction in ensemble standard deviation (DAtsv−OLstdv) between the data assimilation (DA) and openloop for surface soil moisture (sfmc), root zone soil moisture (rfmc), groundwater (GW), runoff, and terrestrial water storage (TWS). Skill is measured as the correlation coefficient (R) versus insitu and GRACE (for TWS) measurements.

Conclusions

- GRACE-DA improves groundwater while SMOS-DA improves surface and rootzone soil moisture.
- The joint GRACE-TWS & SMOS-Tb assimilation maintains good skills in TWS, groundwater, surface and rootzone soil moisture.
- GRACE and SMOS DA are complementary as:
 - GRACE-DA is responsible for most of the ensemble spread reduction in deeper moisture layer (i.e., cdf),
 - SMOS-DA is responsible for most of the ensemble spread reduction in shallower moisture layers (i.e., sfmc).

References:

Acknowledgement:

This study was supported by the NASA Terrestrial Hydrology, Hydrologic Modelling and Satellite Programs (NOMBS) program, and by NASA/NSF Water Cycle (NSF/WCRP) projects, and GRACE and GRACE Follow-On (GO) Data: NASA's Earth Science Data and Information System (ESDIS) Program.