VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

Patricia Parsons-Winterter1, David Kao2, Hamed Vallazdegan3, Rodney Martin4, Matthew C. Murray1,5, Sneha Ramesh1,5, Srinivas Sekaran1,5
1Space Biosciences Research (SBR), 2Advanced Computing Branch (TCN), 3 Universities Space Research Association (USRA), 4 Data Sciences Group (DSG), 5Blue Marble Space Institute of Science (BMSIS), NASA Ames Research Center, Mountain View CA

Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes.

NASA developed an innovative, globally requested beta-level software, VESSEL GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

Branching Vascular Trees and Networks by VESGEN Vascular Mappings

Branching generations of with vascular trees were automatically modeled by VESGEN according to vascular physiological branching rules (top left, images with trees, legend for branching generations). The VESGEN analysis of vascular networks is illustrated for the mouse intrinsic (top, 3rd image). Our CIF collaboration was featured in the February 2017 issue of Technology, quarterly publication of the Ames Chief Technology Officer (top, right image). Lower illustrations are a fluorescence confocal image of the developing lymphatic vascular network in an auric experimental model from Gravitational and Space Biology, confocal images of progressive inflammation in the mouse GI are displayed together with the VESGEN vascular network mappings (bottom, two rows).

By ‘anti-stovepipe’ multi-disciplinary, multi-directorate and external collaborations among biomedical, computer and physicist scientists and engineers, NASA continues to develop the VESGEN vascular analysis resulting from technology development awards by the Center Innovation Fund (CIF), IRAD and Vascular Centennial Challenge (VTC). Consequently, biomedical research discoveries continue to be supported by peer-reviewed research awards from NASA and the US National Institutes of Health, and disclosed as new technology inventions (patent application in progress). For the current CIF award, we are developing: (1) 3D vascular mappings beyond current 2D capabilities, and (2) the automated binarization of vascular maps as black/white vascular patterns from experimental and clinical grayscale vascular images.

Mappings of Progressive Visually Impairing Disease in the Human Retina by VESGEN 2D

Unsupervised and supervised methods are being applied to grayscale vascular images (Hamed Vallazdegan) for significant advances in the automated extraction of binary (black/white) vascular patterns from experimental or clinical grayscale images.

Ongoing Development of VESGEN 3D

Algorithms for 3D vascular mappings have been extended to 3D (David Kao). In addition, potential 3D visualizations of the complex 3D vascular structures are being developed. 3D confocal images of the mouse intestinal (upper left) and mouse retina (lower right) provided by Hasso-Christoph Ronneberger MD, Massachusetts General Hospital, Wenyi Mao PhD, Loma Linda University.

Acknowledgments