Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of large-scale-filament eruptions. Large-scale eruptions are relatively uncommon (~1/day) and occur with relatively large-scale erupting filaments (~10^5 km long). Coronal jets are more common (>100/day), but occur from erupting minifilaments of smaller size (~10^4 km long). It is known that solar spicules are much more frequent (many millions/day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of minifilaments’ of length comparable to the width of observed spicules (~300 km). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fit with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBs of jets might be weak, pervasive, transient brightenings observed in Hinode/Cali images, and the production of spicules by microfilament eruptions might explain why spicules spin, as do coronal jets. The expected small-scale neutral lines from which the microfilaments would be expected to erupt would be difficult to detect reliably with current instrumentation, but might be apparent with instrumentation of the near future. A full report on this work appears in Sterling and Moore 2016. ApJ, 829, L9.