Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

Jon M. Jenkins
NASA Ames Research Center

Monday September 4, 2017

WP11 Exoplanet Science Meeting
University of Warwick
Coventry UK
Overview

• What did it take to build the *Kepler* science pipeline?
• Major modifications to pipeline over lifetime
• High fidelity simulations
• Commissioning, commissioning, commissioning
• High performance computing
• Developing the TESS Science Pipeline
• Communication
• Summary
• Design started in earnest in 2004 with launch in March 2009 and operations through May 2013 and reprocessing through 2017
• A total of ~100 person years of effort went into the first complete version of the pipeline (from pixels to planets)
• The staffing was at ~20 individuals per year through 2016, tapering off thereafter (~280 FTEs over project lifetime)
• Build 5.0 was the launch-ready software release
• There were 4 major builds thereafter, with substantive point releases to mitigate issues subsequently identified in flight or full volume re-processing
• Build 9.0, 9.1, 9.2, 9.3 really represented at least two full builds of effort (issues identified in full re-processing and in completeness and reliability processing)
• Unexpected instrumental effects/stellar variability/hardware failures motivated significant software modifications on orbit
Science Operations Center Architecture

A Search for Earth-size Planets

Science Operations Center

Science Pipeline & Other Infrastructure

Data Receipt
- Raw Pixel Values
- Calibrated Pixel Values

Pipeline Infrastructure
- Raw Flux
- Pre-Search Data Conditioning

Transiting Planet Search
- Threshold Crossing Events (TCEs)

Data Validation

Archive to DMC

Data Mgt Center (MAST)

Archive
- DV Reports

Science Office

Mission Mgmt Office (MMO)

Target List
- Photometer Performance Metrics

Reports

Mission Reports

PDQ Metrics

Photometer Activity Requests

Target Definitions
- Aperture Definitions

Stellar Classification Program (SCP)

User Terminal

Commissioning Tools

Focal Plane Geometry
- Pixel Response Function

Data Goodness

BART TCAT CDQ

Commissioning Reports

Target Management

Catalog Management
- Target and Aperture Definitions

Photometer Management

ETEM
- Focal Plane Characterization

Photometer Data Quality

Generate Activity Request/COMP

PA Metrics
- Corrected Flux

CDPP

Mission Operations Center (MOC)

Original Science Data

Reference Pixels

Data Mgt Center (MAST)

Pipeline GUI

Kepler

NASA
Kepler’s Science Pipeline

- **Raw Data**
 - **CAL**
 - Pixel level Calibration
 - **PA**
 - Photometric Analysis
 - **PDC**
 - Pre-search Data Conditioning

- **Calibrated Pixels**
 - **DV**
 - Data Validation
 - **TPS**
 - Transiting Planet Search

- **Threshold Crossing Events (TCEs)**
 - **TCERT**
 - Threshold Crossing Event Review Team + Robovetting

- **Artificial Transits and Eclipses**
 - **Artificial Transit & BEB Injection Machine**
 - **Corrected Light Curves**

- **Diagnostic Metrics & Reports**
 - **Auto-Vetting**
 - Applying machine learning to candidate evaluation

- **>1,000,000 Lines of Code; 26 different Modules**
Major Modifications

Every component of the science pipeline saw major evolution over mission.

Pixel level calibrations:
• Updates based on actual electronics behavior
• Flagging of electronic image artifacts causing false positives

Identifying optimal apertures
• Use of reconstructed pointing
• Added ability to correct errors in Kepler Input catalog

Photometric analysis
• Major improvements to identifying cosmic rays

Pre-search Data Conditioning
• Development of Maximum a Posteriori approach
• Addition of multi-scale analysis
• Detection of Sudden Pixel Sensitivity Dropouts

Transiting Planet Search
• χ^2 vetoes added

Data Validation
• Difference image analysis
• Ghost Diagnostic + other metrics
Signature of a heater cycling on the reaction wheels 3/4

Kepler is sensitive to its thermal environment
Instrumental Effects in Photometry

High pass filtered

A Search for Earth-size Planets
Correcting Systematic Errors

We apply a Maximum A Posteriori approach as per Stumpe et al. 2014
End-End Model (ETEM) drove design of SOC and testing of entire ground segment

Simulated data were so good that we didn’t need to update the compression tables after launch (the achieved compression (~4.5-5 bits per pixel) was within 0.1 bits of ideal performance.
Difference image analysis was key for Kepler for excluding false positives from background eclipsing binaries

Especially important for bright, saturated (bleeding) targets

KIC 3542116
- Commissioning tools require special attention and data sets
- Effort for commissioning tools may be as great as that for major science pipeline modules
- Don’t leave commissioning tool development to the last
Pixel Response Function Characterization

Kepler PRF

Given a collection of pixels, the SNR of the collection is given by

\[\text{SNR} = \frac{\text{signal}}{\text{noise}} \]

where

\[\text{signal} = \sum_{n=1}^{N} \text{quant} \times \text{signal}_n \]

\[\text{noise} = \sqrt{\text{read noise} + \text{quantization noise} + \text{sky crowding metric}} \]

Kepler

590
560
550
570
540
520
480
590
560
550
570
540
520
480
610
600
610

synthetic image
flight image

TESS PRF

A Search for Earth-size Planets

The fraction of each target's flux that falls in its optimal aperture is due to the target star. The result is close to having a homogeneous distribution which provides exactly 1125 initial guesses at background target positions. Because this output channel is dominated by noise, the collection SNR to decrease. The collection SNR will increase as pixels are added. After the next pixel to be added is the pixel that results in the greatest increase in SNR of the component pixels. Optimal pixel selection begins by estimating the fraction of flux in the optimal aperture, which has an impact on the detectability of transits.
Keeping Up with the Data

A Search for Earth-size Planets

Some Fast Code
Some Slow Code
Improving the Throughput

Some fast code; Some slow code

Step 1: Parallelize all code

Step 2: Make slow code fast(er)
64 hosts, 712 CPUs,
3.7 TB of RAM,
148 TB of raw disk storage
Hardware Architecture: NAS Pleiades Supercomputer

5.34 Pflop/s peak cluster
211,872 cores
724 TB of memory
15 PB of storage
Characterizing completeness and reliability of software/people pipelines is extremely resource intensive.

Kepler shipped the final light curve products in April 2015.

We’ve spent the remainder of the time until present adding artificial transits, BEBs, scrambling the data temporally, inverting the light curves etc., etc.

Mapping completeness and reliability and characterizing the candidate vetting process is difficult.

Recommendation: Pursue machine learning for conducting or modeling the candidate vetting process.
Developing the TESS Pipeline

- ~13X pixel data rate over Kepler
- Leveraged heritage from Kepler pipeline
- Significantly lower cost (~46 FTEs over project lifetime)
- Significant speed improvements:
 - Colocated servers and storage with NAS Pleiades supercomputer
 - Moved pixel-level calibrations to C++
 - Sped up Presearch Data Conditioning by 10X
 - Originally projected 20+ days to process one sector
 - Complete pipeline requires ~5 days to process one sector
A Search for Earth-size Planets

The TESS Project is distributed geographically with the Science Pipeline separated by a continent from the Science Office. Resolving data issues requires good communication between the Payload Operations Center, the Science Processing Operations Center and the Science Office.
New Ideas for Every Step Will Emerge

New ideas for improving photometry/astrometry will emerge, both within the team and without:

- “Halo” photometry on K2 data on Pleiades (White et al. 2017, MNRAS 471)

Preserving ability to re-process the pixel data with better algorithms and tuned parameters is a really good idea.

Take advantage of the compressibility of your data:

- *Kepler* achieved compression rates of 4.5 bits per pixel
- TESS should achieve compression rates of ~3 bits per pixel for 2 minute data and ~4 bits per pixel for 30 min FFIs
Summary

• Science pipelines require significant planning and effort

• Previous pipelines can be leveraged to reduce development time (but this does not reduce time required for V&V testing)

• Plan to rewrite the majority of the science code in light of unexpected in-flight characteristics/behavior/hardware changes

• High fidelity simulations are indispensable

• Determining η_{earth} is computationally intensive and huge effort

• Give adequate attention to developing commissioning scenarios and associated tools

• Take advantage of data compression to increase the amount of pixel data downlinked from PLATO
SOC Cluster Architecture

6 Clusters:
4 Operations Clusters:
 Flight Ops, Quarterly, Monthly
 & Archive)
2 Test Clusters:
 LAB & TEST

Science Processing Pipelines

Long Cadence Photometry Pipeline

- DYN
- CAL
- TAD
- PA
- PDC
- PAD
- PMD
- PAG

Transit Search Pipeline

- TPS
- DV

FFI Pipeline

- CAL
- PA

Short Cadence Pipeline

- CAL
- PA
- PDC