Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

Jon M. Jenkins
NASA Ames Research Center

Monday September 4, 2017

WP11 Exoplanet Science Meeting
University of Warwick
Coventry UK
Overview

- What did it take to build the Kepler science pipeline?
- Major modifications to pipeline over lifetime
- High fidelity simulations
- Commissioning, commissioning, commissioning
- High performance computing
- Developing the TESS Science Pipeline
- Communication
- Summary
KEPLER
SCIENCE DATA PROCESSING PIPELINE
The Science Operations Center: What did it take?

- Design started in earnest in 2004 with launch in March 2009 and operations through May 2013 and reprocessing through 2017
- A total of ~100 person years of effort went into the first complete version of the pipeline (from pixels to planets)
- The staffing was at ~20 individuals per year through 2016, tapering off thereafter (~280 FTEs over project lifetime)
- Build 5.0 was the launch-ready software release
- There were 4 major builds thereafter, with substantive point releases to mitigate issues subsequently identified in flight or full volume re-processing
- Build 9.0, 9.1, 9.2, 9.3 really represented at least two full builds of effort (issues identified in full re-processing and in completeness and reliability processing)
- Unexpected instrumental effects/stellar variability/hardware failures motivated significant software modifications on orbit
Science Operations Center Architecture

Science Operations Center

Science Pipeline & Other Infrastructure

Data Receipt
- Raw Pixel Values
- Calibrated Pixel Values

pipeline Infrastructure
- Raw Flux
- Photometric Analysis
- Pre-Search Data Conditioning

Transiting Planet Search
- Data Store
- Threshold Crossing Events (TCEs)

Calibrated Pixels & Light Curves

Data Validation

Archive to DMC

Data Mgt Center (MAST)

Mission Office (MOC)

Stellar Classification Program (SCP)

Mission Management Office (MMO)

Science Office

DV Reports

NExScI

Target Management
- Catalog Management
- Target and Aperture Definitions

Photometer Management
- Focal Plane Characterization
- Photometer Data Quality
- Photometer Performance Assessment

Generate Activity Request/COMP

Mission Reports

Target Lists

Photometer Performance Metrics

Mission Management Metrics

PDQ Metrics

Commissioning Tools
- Sand Box Tools
- Focal Plane Geometry
- Pixel Response Function
- Data Goodness
- BART TCAT CDQ

Commissioning Reports

Dawn-Select Criteria

User Terminal

Original Science Data

Reference Pixels

Pipeline GUI

Kepler Input Catalog

Photometer Activity Requests
Kepler’s Science Pipeline

- **Raw Data**
 - **CAL**
 - Pixel level Calibration
 - **PA**
 - Photometric Analysis
 - **PDC**
 - Pre-search Data Conditioning

- **Calibrated Pixels**
 - Artificial Transits and Eclipses
 - Raw Light Curves & Centroids
 - Threshold Crossing Events (TCEs)
 - Corrected Light Curves

- **Diagnostic Metrics & Reports**
 - Auto-Vetting
 - Applying machine learning to candidate evaluation
 - Data Validation (DV)
 - Threshold Crossing Event Review Team (TCERT)
 - Threshold Crossing Event Review Team + Robovetting

- **TPS**
 - Transiting Planet Search

- **Planet, or dud?**

>1,000,000 Lines of Code; 26 different Modules
Major Modifications

Every component of the science pipeline saw major evolution over mission

Pixel level calibrations:
• Updates based on actual electronics behavior
• Flagging of electronic image artifacts causing false positives

Identifying optimal apertures
• Use of reconstructed pointing
• Added ability to correct errors in Kepler Input catalog

Photometric analysis
• Major improvements to identifying cosmic rays

Pre-search Data Conditioning
• Development of Maximum a Posteriori approach
• Addition of multi-scale analysis
• Detection of Sudden Pixel Sensitivity Dropouts

Transiting Planet Search
• χ^2 vetoes added

Data Validation
• Difference image analysis
• Ghost Diagnostic + other metrics
Kepler is sensitive to its thermal environment.
Instrumental Effects in Photometry

A Search for Earth-size Planets

High pass filtered

Original
Corrected

Time JD - 2450000

f/d

0
500
-500
0
500
1000
1500
2000

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
Correcting Systematic Errors

We apply a Maximum A Posteriori approach as per Stumpe et al. 2014
End-End Model (ETEM) drove design of SOC and testing of entire ground segment

Simulated data were so good that we didn’t need to update the compression tables after launch (the achieved compression (~4.5-5 bits per pixel) was within 0.1 bits of ideal performance.
Difference image analysis was key for Kepler for excluding false positives from background eclipsing binaries. Especially important for bright, saturated (bleeding) targets:

KIC 3542116
Commissioning tools require special attention and data sets
Effort for commissioning tools may be as great as that for major science pipeline modules
Don’t leave commissioning tool development to the last
noise is given by

\[\nu = \text{quantization noise} \]

where \(\nu \) is the quantization noise. Quantization noise arises from the conversion of the analog signal to digital values. It is typically a small fraction of the signal, but it becomes significant in low-light conditions or when the signal is close to the noise floor.

For a short time interval for the time of the flight image so the output channel. To achieve this distribution the intersect is close.

2.3 Background pixel selection

Optimal aperture that is due to the target star. The resulting optimal aperture is used to define the background pixel set. Because this set is close, but diminishes near the edge of the polynomial domain, more background pixels are needed. Because the accuracy of background polynomials in good polynomials the background targets should be homogeneously distributed.

The background and target images allow us to estimate crowdmetric on a 21 pixel square provides a size 21 = 1116 mesh lines. This mesh is the product of two linear meshes we cannot choose the intersection of an irregular Cartesian mesh are used for the presentation of the background on each channel.

To lead to a choice of 31 = 1125 mesh lines. This is useful for identifying uncrowded stars.

Given a collection of pixels, the SNR of the collection is given by:

\[\text{SNR} = \frac{w^2}{\sqrt{n}} \]

where \(w \) is the number of bits in the analog-to-digital converter (= 14). This formula is used to calculate the signal-to-noise ratio for a given collection of pixels. The SNR increases as pixels are added, but the increase in SNR of the collection. Initially the pixel collection with the highest SNR defines the aperture is also computed.

ng by estimating the fraction of flux in the optimal aperture, which has an impact on the detectability of transits. The same flux from the target in the optimal aperture, which has an impact on the detectability of transits.

Kepler PRF

TESS PRF
Keeping Up with the Data
Improving the Throughput

Some fast code; Some slow code

Step 1: Parallelize all code

Step 2: Make slow code fast(er)
Hardware Architecture: Kepler Science Operations Center

64 hosts, 712 CPUs,
3.7 TB of RAM,
148 TB of raw disk storage
Hardware Architecture:
NAS Pleiades Supercomputer

5.34 Pflop/s peak cluster
211,872 cores
724 TB of memory
15 PB of storage
Characterizing completeness and reliability of software/people pipelines is extremely resource intensive. Kepler shipped the final light curve products in April 2015. We’ve spent the remainder of the time until present adding artificial transits, BEBs, scrambling the data temporally, inverting the light curves etc., etc.

Mapping completeness and reliability and characterizing the candidate vetting process is difficult.

Recommendation: Pursue machine learning for conducting or modeling the candidate vetting process.
Developing the TESS Pipeline

- ~13X pixel data rate over Kepler
- Leveraged heritage from Kepler pipeline
- Significantly lower cost (~46 FTEs over project lifetime)
- Significant speed improvements:
 - Colocated servers and storage with NAS Pleiades supercomputer
 - Moved pixel-level calibrations to C++
 - Sped up Presearch Data Conditioning by 10X
 - Originally projected 20+ days to process one sector
 - Complete pipeline requires ~5 days to process one sector
The TESS Project is distributed geographically with the Science Pipeline separated by a continent from the Science Office. Resolving data issues requires good communication between the Payload Operations Center, the Science Processing Operations Center and the Science Office.
New ideas for improving photometry/astrometry will emerge, both within the team and without

- “Halo” photometry on K2 data on Pleiades (White et al. 2017, MNRAS 471)

Preserving ability to re-process the pixel data with better algorithms and tuned parameters is a really good idea

Take advantage of the compressibility of your data

- *Kepler* achieved compression rates of 4.5 bits per pixel
- TESS should achieve compression rates of ~3 bits per pixel for 2 minute data and ~4 bits per pixel for 30 min FFIs
Summary

- Science pipelines require significant planning and effort
- Previous pipelines can be leveraged to reduce development time (but this does not reduce time required for V&V testing)
- Plan to rewrite the majority of the science code in light of unexpected in-flight characteristics/behavior/hardware changes
- High fidelity simulations are indispensable
- Determining η_{earth} is computationally intensive and huge effort
- Give adequate attention to developing commissioning scenarios and associated tools
- Take advantage of data compression to increase the amount of pixel data downlinked from PLATO
SOC Cluster Architecture

6 Clusters:
4 Operations Clusters:
 Flight Ops, Quarterly, Monthly & Archive)
2 Test Clusters:
 LAB & TEST

Science Processing Pipelines

Long Cadence Photometry Pipeline

- DYN → CAL → TAD → PA → PDC → PAD → PMD → PAG

Transit Search Pipeline

- TPS → DV

FFI Pipeline

- CAL → PA

Short Cadence Pipeline

- CAL → PA → PDC