SpaceCube: Current Missions and Ongoing Platform Advancements

Dave Petrick
NASA/GSFC
Code 587

9/3/2009

NOTE: Handout Version

MAPLD 2009 - Session E
GSFC SpaceCube

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
- Stackable architecture
- Based on Xilinx Virtex 4 FX60 FPGAs, 2 per processor card
- **Successful flight demonstration on STS-125**

Processor Card

- 2 Xilinx FPGAs, 2 Aeroflex FPGAs
- 1GB SDRAM, 1GB Flash

Flight Box

- Mechanical: 7.5-lbs, 5”x5”x7”
- Power: 37W (STS-125 Application)
Current Tasks

- **SpaceCube 1.0**: RNS flight spare to ISS (Nov 09)
 - Platform for testing radiation mitigation techniques starting with Rad-Hard by Software (RHBS)
 - Collaborating with industry and universities

- **SpaceCube 1.5**: Sounding Rocket Avionics
 - DoD Operationally Responsive Space payload funding
 - Feature Xilinx Virtex 5 FX100 with gigabit interfaces

- **SpaceCube 2.0**: Increased performance over SC1.X
 - ESTO funding Prototype FY10, Engineering Unit FY12
 - For missions requiring high data rates and/or onboard science data processing
MISSE-7 Overview

- Materials International Space Station Experiment
- Payload Lead: Naval Research Lab
- STS-129 Shuttle Atlantis, November 12, 2009
MISSE-7 SpaceCube

- Flight spare SpaceCube from HST SM4, STS-125
 - Re-engineered box for MISSE-7/ELC interface
 - Built adapter plate, custom harness, new software
 - Delivered box to NRL in 9 months!
- Test bed for radiation mitigation techniques
 - Start with “Radiation-Hardened by Software”
- Supports compressed file uploads
- Operations from a laptop
MISSE-7 SpaceCube

MISSE-7 Express Pallet Integration
MISSE-7 SpaceCube

MISSE-7 Express Pallet Ready to Fly
MISSE-7 SpaceCube Block Diagrams

- ISS
- ELC Avionics
- Comm Interface
- SpaceCube
- Other Experiments

GROUND
MISSE-7 SpaceCube Block Diagrams
MISSE-7 SpaceCube Block Diagrams

- TMR
- SCRUBBER
- DCM
- MAIN CDH PPC_0
- BOOT BRAM
- SDRAM
- CIB UART
- PIC USRT
- CMD_TLM BRAM
- GPIO
- DCM RST/STAT
- CODE BRAM
- Spare PPC_1
- Redundant DCM
- Redundant DCM
- MicroBlaze
- CODE BRAM

MAPLD 2009 - Session E
MISSE-7 SpaceCube Future Work

• Enjoy the Space Shuttle launch!!

• Conduct ops and analyze radiation data
• Improve RHBS algorithms and incorporate OS
• Collaboration with industry partners and universities
• Upload improved FPGA/SW designs
SpaceCube 1.5 Overview

- **SpaceCube 1.5 Processor Card**
 - DoD Operationally Responsive Space (ORS) payload funding
 - COTS components
 - Targets small-scale missions such as sounding rockets
 - Short-duration flights
 - Features inherited from SpaceCube 1.0
 - 4” x 4” Form-Factor
 - Stackable Architecture
 - Legacy flight interfaces (RS-422/LVDS)
 - Power card compatibility
 - Bridge to SpaceCube 2.0
 - Transition to Xilinx Virtex-5 FPGA / PowerPC 440
 - “Plug and Play” Gigabit interfaces (SATA, Ethernet)
 - High-speed DDR2 SDRAM memories
SpaceCube 1.5: Processor Card

- Gigabit Ethernet
- Gigabit Ethernet
- Xilinx Platform Flash XL
- Serial ATA
- Serial ATA
- A/D Converter 1 MSPS
- Accelerometer
- A/D Converter 1 MSPS
- 12 x RS-422 RX
- 12 x RS-422 TX
- 4Gbit Flash
- 2Gbit DDR2 SDRAM
- 2Gbit DDR2 SDRAM

Xilinx Virtex-5 FX100T
SpaceCube 1.5: SMART/ORS

- **Small Rocket/Spacecraft Technologies (SMART)**
 - Joint program between NASA and ORS

- **Objectives**
 - Develop faster, leaner, and more efficient approach to space flight
 - Maturation of miniaturized avionics for small launch vehicles, flight safety, and spacecraft applications
 - Reconfigurable payload structure for accommodating various subsystems
 - Demonstration of technologies applicable to future rocket balloon flights

- **Series of sounding rocket flights**
 - First launch: Summer 2010 on a Terrier Improved-Orion sounding rocket

- **Micro-satellite platform with SpaceCube 1.5 as payload avionics**
 - Ingest data from
 - RocketCam
 - 2 x GigE Industrial Cameras
 - Inertial Measurement Unit (IMU)
 - GPS
 - Sensors (pressure, thermal, acceleration)
 - Cameras validate interfaces and document flight and deployment of parachute
 - Record data telemetry on two commercial SATA Solid State Drives (SSD)
 - Downlink reduced telemetry through transponder (10Mb/s)
SMART System
SpaceCube 1.5: Status & Future Work

- Challenges:
 - Small Form Factor requires careful device selection and constrains I/O resources
 - Finding SATA solution (chose SATA IP Core)

- Improvements:
 - Compact/Rugged gigabit connectors capable of meeting **ALL** SATA specifications

- Status:
 - Completing schematic phase, initiating layout phase
 - FPGA/Software implementation of key interfaces proceeding on development boards
SpaceCube 2.0 Overview

Flight Processor Comparison

<table>
<thead>
<tr>
<th>Processor</th>
<th>MIPS</th>
<th>Cost</th>
<th>Power</th>
<th>MIPS/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIL-STD-1750A</td>
<td>3</td>
<td>-</td>
<td>15W</td>
<td>0.2</td>
</tr>
<tr>
<td>RAD6000</td>
<td>35</td>
<td>$250K</td>
<td>10-20W</td>
<td>2.33</td>
</tr>
<tr>
<td>RAD750</td>
<td>< 500</td>
<td>$200K</td>
<td>10-20W</td>
<td>30</td>
</tr>
<tr>
<td>SpaceCube 1.0</td>
<td>3000</td>
<td>$60K</td>
<td>5-15W</td>
<td>400</td>
</tr>
<tr>
<td>SpaceCube 2.0</td>
<td>5000</td>
<td>$75K</td>
<td>10-20W</td>
<td>500</td>
</tr>
</tbody>
</table>

Notes:
1 - typical, 35 MIPS at 15 watts
2 - typical, 450 MIPS at 15 watts
3 - 3000 MIPS at 7.5 watts (measured)
4 - 5000 MIPS at 10 watts (calculated)
SpaceCube 2.0 Processor Interfaces

- cPCI
- SATA
- Multi-Gbps Transceivers
- PCIe/x8
- I2C/CAN/GPIO
- LVDS/SpaceWire
- Ethernet
- Multi-Gbps Transceivers
- JTAG/Serial Debug

SpaceCube 2.0 Processor

- LEON 3FT
- SIRF Virtex 5 FX130T
- SIRF Virtex 5 FX130T
- 2.0 GB FLASH
- 2.0 GB RAM
SpaceCube 2.0 Development Paths

Main Goals:
• Retain processing power of SpaceCube 1.0
• Add gigabit interfaces
• Improving overall reliability
SpaceCube On-Board Data Processing

On-Board HyperSpectral Data Processing IRAD --- Left: California Wildfire Scene, Center: On-Board Wildfire Detection and Temperature Characterization, Right: On-Board Product Generation for Direct Downlink to Emergency Services Personnel
Acronyms

- CDH: Command and Data Handling
- ELC: Express Logistics Carrier
- ESTO: Earth Science Technology Office
- FPGA: Field Programmable Gate Array
- IRAD: Internal Research and Design
- ISS: International Space Station
- MISSE: Materials ISS Experiment
- NRL: Naval Research Laboratory
- ORS: Operationally Responsive Space
- OS: Operating System
- PCI: Peripheral Component Interconnect
- PPC: PowerPC
- RHBS: Radiation-Hardened By Software
- RNS: Relative Navigation Sensors
- SATA: Serial Advanced Technology Attachment
- SEE: Single Event Effect
- TMR: Triple Module Redundancy