Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application

James J. Wu, Brianne DeMattia, Patricia Loyselle, Concha Reid, Lisa Kohout
NASA Glenn Research Center

13th Annual Lithium Battery Materials and Chemistries
Hyatt Centric, Virginia, October 31 - November 1, 2017
Outline

• Introduction/NASA Energy Requirements
• Challenges and Opportunities
• Approaches
• Result Summary
• Next Steps and Future Directions
Energy Storage: Important for NASA Missions

– Battery and capacitor: versatile, reliable, safe and portable energy sources

– Electrical energy storage options for NASA space mission, such as
 • power source during spacecraft eclipses
 • peaking power for high power needs

– an essential component of the power system of virtually all NASA missions
Desired Properties of Energy Source for NASA Missions

- Safe
- High in specific energy
- Light in weight
- Compact in volume
- Long in shelf life
- Durable in wide temperature range and at harsh environment
- Reliable in meeting mission requirements
State-of-Art (SOA) Li-Ion Battery (LIB)

• Typical LIB Specs:
 – Specific energy: 180-200 Wh/kg
 – Specific power: 300 W/kg
 – Cycles: 1000s
 – Temp range: -20°C to 60°C

• Limitations:
 – Maximum of energy density <250 Wh/kg
 – Electrolyte flammable and fire hazards
NASA Demands Very High Energy Density

Electric Aviation

- 500 – 750 Wh/kg
- Green aviation – Less noise, lower emissions, high efficiency
- Hybrid / All-electric aircraft – Limited by mass of energy storage system
- Commercial aviation – Safe, reliable, lightweight on-board electric auxiliary power unit

Extravehicular Activities (Spacesuit power)

- >400 Wh/kg
- Required to enable untethered EVA missions lasting 8 hours within strict mass and volume limitations.
- Astronaut life support
- Safety and reliability are critical
- 100 cycles

Landers and Rovers, Robotic missions, In-space habitats

- >500 Wh/kg
- Batteries are expected to provide sufficient power for life support and communications systems, and tools including video and lighting
- >100 cycles

NASA future mission requirements far exceed the capabilities of SOA Li-ion chemistries

➢ requires advances in safe, very high energy batteries development
• Advanced safe, high energy/ultra-high energy Li-ion batteries

• Advanced electrode materials
 • Advanced anode active materials (i.e. Si anode, w/Georgia Tech, Physical Science, inc.)
 • Advanced cathode active materials (i.e. high capacity NMC, w/University of Texas at Austin)

• Advanced electrolyte to improve safety
 • Non-flammable additives to reduce the flammability (w/ NASA/JPL)

• Industrial manufacturers
 • Saft America, Yardney etc
Phase I: 8 month, 4 awards were given:
- 1 award (Category I) on Si Anode based Li-ion battery (Amprius)
- 3 awards (Category II) on Li/S battery development (JPL/CIT, IUPIU, University of Maryland (UMD))

Phase II: 12 month, 2 award were given:
- **Amprius**: Silicon Anode Based Cells for High Specific Energy Systems (COR: Brianne Demattia)
 - Commercial standard cathode paired with Amprius’ silicon anode
 - Phase I: Deliverables with >300 Wh/kg after 225 cycles (pouch cell)
 - Phase II: Scale-up cells (2X size in phase I) with >300 Wh/kg over 200 cycles
 - Additional temperature & safety evaluations at cell & battery levels
 - Battery pack brassboard delivering > 250 Wh/kg
- **University of Maryland**: Garnet Electrolyte-Based Safe Lithium-Sulfur Energy Storage (COR: James Wu)
 - All solid state battery with unique and scalable trilayer (porous-dense-porous) solid state electrolyte (SSE) structure.
 - Phase I: demonstrated the feasibility in lab cells (coin cell)
 - Phase II: optimize the parameters and scale up to 5cm x 6cm sizes with targeted energy density ~500 Wh/kg
POC: Lisa Kohout, Battery Subtopic Manager (GRC)

- NASA SBIR topics are aligned with one of four Mission Directorates
 - Solicitations focus on specific technology gaps
- Subtopics in FY17 solicitation with focus on electrochemical technologies led by NASA Glenn Research Center

Funding
- Phase I: $125K (6 months) for SBIR, or 12 month for SBIR/STTR
- Phase II: $750K (24 month)

Current/previous SBIR Phase II award:

2017: Cornerstone Research Group, *Advanced Lithium Sulfur Battery*

2014
- Nohms Technologies - *Li Metal Protection for High Energy Space Batteries*

2012
- Storagenergy Technologies – *Advanced Li/S Batteries Based on Novel Composite Cathode and Electrolyte System*
Two major types of electrochemical-based energy storage devices

- **Battery:** Faradic/exothermal redox reaction (many different varieties)
 - High energy density
 - Electrode degradation
 - Limited cycle life

- **Capacitor:** Electrostatic/capacitive interaction
 - High power density
 - Electrode structural integration
 - Long cycle life
How to Improve Both Power Density and Energy Density of Battery

• New materials with high specific capacity

• Novel architectures: 3D design of electrode
 • Thinner electrode (fast ionic transport)
 • High electronic conductivity (fast e^- transport)
 • High electrode/electrolyte interfacial area (fast charge transfer across the interface)
How to Improve Both Energy Density and Power Density of Capacitor

- One approach is to hybrid the capacitor electrode with one battery electrode i.e. asymmetric supercapacitor

- One electrode (as cathode) from capacitor (i.e. active carbon w/high porosity and high surface area) undergoes electrostatic interaction

- The other electrode (as anode) from battery (i.e. silicon with high specific capacity) undergoes electrochemical redox reaction
Si: a Promising Li-Ion Anode Material

Attractive Features
- High theoretical specific capacity (4200 mAh/g)
- Low potential 0.4V vs. Li/Li⁺
- Nontoxicity
- Abundance element on Earth crust

Challenges
- Low electronic conductivity
- Large volume expansion (3005-400%)
- Unstable SEI – fast capacity fade

Approaches
- Carbon/Si composite, w/nanosized or nanostructured Si
- Enabler for SEI formation
Si-Based Li-ion Capacitor

Li-ion anode, such as Si

Separator

Actived carbon (AC) cathode

Electrolyte: 1M LiPF6 in EC:DEC:DME (2:1:2) w/10% FEC
Cyclic Voltammetry of Individual Electrode in Half-Cell

Si Anode

AC Cathode
Impedance of Individual Electrode in Half-Cell

Si anode

AC Cathode
Initial Cycling of Individual Electrode in Half_Cell

Si Anode

AC Cathode

0.01V – 1V

2V – 4.5V
Rate Capability Cycling of Individual Electrode in Half-Cell

Si Anode

AC Cathode

De-insertion Capacity (mAh/g)

Discharge Capacity (mAh/g)

Cycle #

Cycle #
Cyclic Voltammetry of Si-AC Full Cell Capacitor
Impedance of Si-AC Full Cell Capacitor

Before CV cycling

CV cycling to 2.0V

CV cycling to 4.5V

CV cycling
Initial Cycling of Si-AC Capacitor
Rate Capability Cycling of Si-AC Capacitor

Power Density

\[y = 3.032x + 8.357 \]
\[R^2 = 0.999 \]

Energy Density

\[y = -0.191x + 203.3 \]
\[R^2 = 0.999 \]
Voltage Profile of Individual Electrode in Si-AC Capacitor using Reference Electrode

Voltage (V)

Time (Hrs)

AC vs. ref.

Cell voltage

Si vs. ref.
Results Summary

- Si-based Li-ion capacitor has been developed and demonstrated
- The results show it is feasible to improve both power density and energy density in this configuration
 - The applied current density impacts the power and energy density: low current favors energy density while high current favors power density
 - Active carbon has a better rate capability than Si

Next Steps/Future Directions

- Si electrode needs to be further improved
- Further optimization of Si/AC ratio and evaluation of its impact on energy density and power density
Acknowledgement

• Convergent Aeronautics Solution Project – Multifunctional Structure with High Energy Lightweight Loadbearing Storage

• Former Advanced Space Power System Project
Thank you!