Enabling Airspace Integration for High Density Urban Air Mobility

Eric Mueller
4/26/2017
Outline

• Barriers
 • The airspace integration problem
• Opportunities
 • Integrating new airspace users
 • Review of selected capabilities
• Research approach

An incremental approach to airspace integration can achieve high-density urban air mobility
Urban Air Mobility

Drive - Fly Mode Choice

<table>
<thead>
<tr>
<th>One-Way Trip Length (miles)</th>
<th>Total Trips (billion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-499</td>
<td>0.0</td>
</tr>
<tr>
<td>500-749</td>
<td>0.0</td>
</tr>
<tr>
<td>750-999</td>
<td>0.0</td>
</tr>
<tr>
<td>1,000-1,499</td>
<td>0.0</td>
</tr>
<tr>
<td>1,500+</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Operating safely and efficiently in a given volume without unreasonably burdening existing airspace users or air traffic control
Airspace Integration Options

IFR (Instrument Flight Rules): under the supervision of air traffic control (ATC)
VFR (Visual Flight Rules): used largely by general aviation, not commercial operators
UTM (UAS Traffic Management): parallel ATC system for small, low altitude UAS

Simplified National Airspace System (NAS)

*VMC/IMC = Visual/Instrument Meteorological Conditions

Image courtesy of Flight Test STEM
The IFR Airspace Integration Problem

- High-density reference mission in a single metropolitan area (30x40 nmi)
 - 1200 aircraft, 150,000 passengers per day, more operations than the entire NAS
 - Approximately one urban air mobility aircraft per square mile

Urban air mobility density is ~400 times higher than the allowable IFR density
Airspace Integration for New Users
Airspace Integration Principles

1. Does not require additional air traffic control (ATC) infrastructure

2. Does not impose additional workload on human controllers (i.e. ATC)

3. Does not restrict operations of traditional airspace users

4. Will meet appropriate safety thresholds and requirements

5. Will prioritize operational scalability to reach high aircraft densities

6. Will allow flexibility where possible and structure where necessary
Airspace Integration Approaches

Start where you are with what you have…

<table>
<thead>
<tr>
<th>Approach</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Prognosis for urban mob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFR</td>
<td>Air traffic services allow operation anywhere, anytime</td>
<td>Not scalable</td>
<td>Operationally incompatible, automated technologies and services may extend to urban mobility</td>
</tr>
<tr>
<td>VFR</td>
<td>Maximum autonomy from ATC for manned aircraft</td>
<td>Must provide own ATC services, no IMC ops, not scalable</td>
<td>Allows autonomy from ATC, but safety, scalability, and efficiency are too low</td>
</tr>
<tr>
<td>UTM</td>
<td>ATC ecosystem for small UAS provides all relevant services</td>
<td>Quality and availability of services for small UAS require extensions for manned aviation</td>
<td>Supplies most services necessary for high density urban mobility, but tech. and procedures still in research phase</td>
</tr>
</tbody>
</table>
How to get to High Density Urban Air Mobility

…make something of it and never be satisfied

1. Start by operating VFR according to today’s rules

2. Incrementally develop and certify aircraft-centric technologies to relieve operational constraints

3. Adopt UTM services as replacements for aircraft-centric technologies and VFR requirements
Approaches to Developing Capabilities

Low Density
VFR-dominated operations, new procedures

Contribution of Capability/Technology
- Procedural (VFR)
- Vehicle (IFR/UAS)

Time (years)
- +N

Medium Density
Advanced VFR with adapted UAS, IFR technologies

Contribution of Capability/Technology
- Procedural (VFR)
- Vehicle (IFR/UAS)
- UTM

Time (years)
- +N
- +2N

High Density
Autonomous ops. with UTM services

Contribution of Capability/Technology
- Procedural (VFR)
- Vehicle (IFR/UAS)
- UTM

Time (years)
- +N
- +2N

Notes
- See and avoid unsafe
- Sequencing and spacing inefficient
- IMC constraints
- Aircraft tech. too costly,
- Centralized coordination may be more efficient
- Pilot needs to be remote

Diagram Description:
- The graph illustrates the development of capabilities over time, categorized into low, medium, and high density scenarios.
- **Low Density** focuses on VFR-dominated operations with new procedures.
- **Medium Density** involves advanced VFR with adapted UAS and IFR technologies.
- **High Density** includes autonomous operations with UTM services.

Key Points:
- The contribution of capability/technology over time changes, with procedural (VFR) decreasing and vehicle (IFR/UAS) and UTM increasing.
- Time markers +N and +2N indicate different phases of development.

Technical Details:
- See and avoid unsafe situations become less critical as technology progresses.
- Sequencing and spacing become more efficient.
- IMC constraints reduce as technology advances.
- Aircraft technology becomes too costly, and centralized coordination is more efficient.
- Pilots need to be remote for high-density operations.
Capabilities Required for Airspace Integration

- Communications
- Navigation
- Surveillance
- Weather/Met. Data
- Security
- Airspace routes
- Airspace constructs
- Airspace classes
- Geofencing
- Take-off and landing areas

- Demand-capacity balancing
- Separation
 - aircraft, obstacles, terrain
- Scheduling, sequencing and spacing
 - to take-off and landing areas, corridors, ops. areas
- Trajectory planning
- Wake avoidance
- All-weather and night-time operations
- Contingency management
- Community impact (noise)
Capabilities Required for Airspace Integration

- Communications
- Navigation
- Surveillance
- Weather/Met. Data
- Security
- Airspace routes
- **Airspace constructs**
 - Airspace classes
 - Geofencing
 - Take-off and landing areas
- Demand-capacity balancing
- **Separation**
 - aircraft, obstacles, terrain
- **Scheduling, sequencing and spacing**
 - to take-off and landing areas, corridors, ops. areas
- Trajectory planning
- Wake avoidance
- All-weather and night-time operations
- Contingency management
- Community impact (noise)
Airspace Constructs (AC)

- Today, AC consist of procedures and rules that enhance safety or efficiency
 - Los Angeles special flight rules area (SFRA)
 - Mode-C veil, with ADS-B (i.e. satellite-based surveillance)
- For urban air mobility, airspace constructs will compensate for technological limitations
- UTM will provide more efficient airspace access than AC
 - May allow dynamic ACs

UTM would relieve the need to impose airspace constructs
Sequencing, Scheduling, Spacing (SSS)

• Today, SSS is used to regulate the flow of traffic into constrained airspace
 • Airport (terminal) areas
 • VFR aircraft follow procedures and use vision
 • IFR aircraft sequenced far from the airport and merged by humans using advisory tools
 • Weather-impacted enroute sectors
• Urban air mobility will require an automated or distributed SSS capability for VTOLs
• UTM surveillance and trajectory prediction capabilities will directly support SSS functions

Traffic Management Advisor

UTM does not require SSS, but the services it provides could be extended to this capability
Separation Services

- Today, different aircraft types separate differently
 - VFR aircraft separate visually
 - IFR aircraft separated by ATC, but require visual and electronic collision avoidance
 - Right-of-way rules for aircraft classes

- Urban air mobility aircraft will assume responsibility for separation to avoid IFR capacity limitations
 - UAS detect-and-avoid (DAA) systems
 - Vehicle-to-vehicle (V2V) technologies

- UTM will provide surveillance and separation services, but tailored for small UAS

UTM provides separation services, need to reduce risk to apply them to human-carrying aircraft
Research Approach for Airspace Integration
Airspace Capacity Enablers

What capabilities will increase the capacity of the airspace?

System viability

Airspace Capacity

Low density, procedures and algorithms
(eg, VFR, SFRA, SSS)

Medium density, aircraft technologies, some UTM
(e.g. DAA, IMC ops, V2V)

High density, UTM, autonomy,
(e.g. UTM, self-piloted)

Deliver validated data on the cumulative benefits and costs of these capabilities
Airspace Capacity Enablers

What capabilities will increase the capacity of the airspace?

Deliver validated data on the cumulative benefits and costs of these capabilities
Next Steps

1. Organize a community of interest for airspace integration
2. Develop a roadmap of airspace integration solutions by density level
3. Develop required airspace services, whether aircraft-centric or in UTM
4. Create analysis, modeling, simulation, flight test infrastructure
5. Verify scalability of airspace solutions through simulations
6. Validate deployability of solutions through flight tests

An incremental approach to airspace integration can achieve high-density urban air mobility

Eric.Mueller@nasa.gov
Backup
UTM Architecture
UTM Architecture

Color Key:

- **ATC Function**
- **Operator Function**
- **FAA Development & Deployment**
- **Industry Development & Deployment**
- **Other Stakeholders**
Airspace Integration Research Approach

Technology and Procedure Candidates

- UAM Corridors
- Aircraft
- UTM
- V2V/DSRC
- Separation

UAM Concepts

- DAA systems
- IMC
- Automation
- SSS

High-maturity (TRL) capabilities

- Flight Test
- Deployability
- Technology Integration
- HitL Evaluation
- Scalability
- NAS-wide Simulation

Low-maturity capabilities

- ATC
- Pilots

Deployability

Scalability
Airspace Integration R&D Goals

• Provide concepts, technologies and procedures that enable orders of magnitude increases in the capacity of the airspace for novel vehicle types and operations through cooperative airspace traffic management that does not require additional ATM infrastructure

• Flight test demonstration of integrated system deployability at successively higher traffic densities

• Simulation demonstration of concept scalability with novel capabilities at successively higher densities
Mapping Approaches to Capabilities

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Procedural</th>
<th>Vehicle</th>
<th>UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information gathering and exchange</td>
<td>Charted routes, GPS & radio beacons, pilot SAA & ADS-B, FIS, VHF</td>
<td>V2V state & intent exchange, 802.11p, aGPS + WAAS, DAA, VDL, cell net.</td>
<td>UTM-aggregated data, V2V backup, limited DAA, aGPS + GBAS, cell net., sat. comm.</td>
</tr>
<tr>
<td>Airspace design</td>
<td>UAM corridors in terminal airspace, public helipads</td>
<td>High density corridors enroute, reserved airspace, municipality TOLAs</td>
<td>No UAM structure, some traditional users excluded, neighborhood TOLAs</td>
</tr>
<tr>
<td>Airspace Services</td>
<td>Pilot SAA, traditional flight planning</td>
<td>DAA for separation & SSS, AR wake avoidance</td>
<td>UTM-provided services & traj. planning, backup DAA</td>
</tr>
<tr>
<td>Resilience, scalability</td>
<td>NOTAMs, scripted contingency ops, daytime only, VMC</td>
<td>V2V-coordinated contingency ops, IMC, night-time</td>
<td>FIMS, dynamic contingency ops, all weather, all times</td>
</tr>
</tbody>
</table>
UAM Separation Services

Separation between different types of aircraft handled differently

<table>
<thead>
<tr>
<th>Aircraft pairs</th>
<th>Low Density</th>
<th>Medium Density</th>
<th>High Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAM-UAM</td>
<td>SAA, AC, ADS-B</td>
<td>DAA, V2V, AC</td>
<td>UTM, V2V, DAA</td>
</tr>
<tr>
<td>UAM-IFR</td>
<td>Segregation, SAA, ADS-B</td>
<td>DAA, ADS-B</td>
<td>UTM, DAA</td>
</tr>
<tr>
<td>UAM-VFR</td>
<td>SAA, ADS-B</td>
<td>DAA, ADS-B</td>
<td>UTM, DAA</td>
</tr>
<tr>
<td>UAM-sUAS</td>
<td>Segregation</td>
<td>V2V, DAA</td>
<td>UTM, V2V, DAA</td>
</tr>
</tbody>
</table>
UTM Architecture and Services

Flexibility where possible, structure where necessary

- AIRCRAFT
 - SEPARATION
 - TOLA OPERATIONS
 - ENHANCED FLIGHT RULES

- AIR NAVIGATION SERVICE PROVIDER
 - DIRECTIVES
 - DEMAND/CAPACITY MANAGEMENT
 - AIRSPACE
 - CONSTRAINTS MANAGED BY EXCEPTION

- OPERATIONS CENTER
 - TRAJECTORY PLANNING
 - SCHEDULING
 - DYNAMIC ROUTING
 - FLEET MONITORING
 - CONTINGENCIES

- SUPPORT SERVICE SUPPLIERS
 - WEATHER TRACKING
 - SEPARATION
 - 3D MAPS
 - SPACING
 - COMMUNICATION

- FLEET MONITORING

- TRAJECTORY PLANNING

- DYNAMIC ROUTING

- FLEET MONITORING

- CONTINGENCIES