A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed

Andrew Chrysler
Cynthia Furse
University of Utah

Raineee Simons
Félix Miranda
NASA Glenn Research Center
Motivation & Objective

- Design a 26 GHz, K_a band Reflector Antenna Feed to support next-generation SCaN architecture
 - Lightweight
 - Small
 - Durable
 - Circular Polarized
Circular Polarized (CP), Truncated Corner Patch Antennas

Originally from 1981, Reprinted in 1988

Explore changes that occur in the antenna design as the frequency is increased to 26 GHz
Major Topics

- Single Element, Truncated Corner, Circular Polarized Patch Antenna
- Feed Network
- 2x2 Sub Array
Major Topics

- Single Element, Truncated Corner, Circular Polarized Patch Antenna
- Feed Network
- 2x2 Sub Array
Truncated Corners create Circular Polarization (CP) in the Patch Antenna

Corner Truncation produces CP

Rogers 5880 \(\varepsilon_r = 2.2 \)

Wavelength inside Substrate, \(\lambda_d \)
Truncation and S_{11} Design

Rogers 5880
- Low Loss, $\varepsilon_r = 2.2$
- Many Thickness Available
- Common Substrate

Decreasing Substrate Thickness (Rogers 5880)

Truncation Amount, a
- Known Relationship to S_{11}
- Unknown Relationship to Axial Ratio (AR)
10 mil, Rogers 5880 ($\varepsilon_r = 2.2$)
Truncation Varied, 50Ω Microstrip Feed

Simulation * Under predicts Measured Resonant Frequency
10 mil, Rogers 5880 ($\varepsilon_r = 2.2$)
Truncation Varied, 50Ω Microstrip Feed

Simulation
* Under predicts Measured AR Bandwidth

<table>
<thead>
<tr>
<th>a [mm]</th>
<th>3 dB Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>4.22 %</td>
</tr>
<tr>
<td>0.57</td>
<td>6.73 %</td>
</tr>
<tr>
<td>0.60</td>
<td>2.07 %</td>
</tr>
<tr>
<td>0.74</td>
<td>1.78 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a [mm]</th>
<th>3 dB Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.37 %</td>
</tr>
<tr>
<td>0.57</td>
<td>1.37 %</td>
</tr>
<tr>
<td>0.60</td>
<td>0.78 %</td>
</tr>
<tr>
<td>0.74</td>
<td>----</td>
</tr>
</tbody>
</table>
10 mil, Rogers 5880 ($\varepsilon_r = 2.2$)

Truncation Varied, 50Ω Microstrip Feed

The Best AR and the Best S_{11} do not occur at the same frequency

26.2 GHz

25.3 GHz
Effect of

- Substrate Thickness
- Substrate Dielectric Constant
- Antenna Design Frequency
Effect of

- Substrate Thickness
- Substrate Dielectric Constant
- Design Frequency

Substrate Thickness, t
Substrate Thickness Variation at the K_a Band (26 GHz)

<table>
<thead>
<tr>
<th>Substrate Thickness</th>
<th>L [mm]</th>
<th>a [mm]</th>
<th>λ_d [mm]</th>
<th>t/λ_d</th>
<th>AR 3dB Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mil</td>
<td>3.83</td>
<td>0.34</td>
<td>7.8</td>
<td>0.016</td>
<td>0.47 %</td>
</tr>
<tr>
<td>10 mil</td>
<td>3.75</td>
<td>0.49</td>
<td>7.8</td>
<td>0.033</td>
<td>1.19 %</td>
</tr>
<tr>
<td>20 mil</td>
<td>3.56</td>
<td>0.68</td>
<td>7.8</td>
<td>0.065</td>
<td>2.47 %</td>
</tr>
</tbody>
</table>

Design Choice

Rogers 5880

AR & S11 Mismatch
• Effect of
 • Substrate Thickness
 • Design Frequency
 • Substrate Dielectric Constant
10 mil, Rogers 5880 ($\varepsilon_r = 2.2$) Frequency Varied (Simulation)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>L [mm]</th>
<th>a [mm]</th>
<th>λ_d [mm]</th>
<th>t/λ_d</th>
<th>AR 3dB Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 GHz (S Band)</td>
<td>40.4</td>
<td>1.563</td>
<td>80.9</td>
<td>0.12</td>
<td>--</td>
</tr>
<tr>
<td>6 GHz (C Band Center)</td>
<td>16.7</td>
<td>1.011</td>
<td>33.7</td>
<td>0.30</td>
<td>--</td>
</tr>
<tr>
<td>10 GHz (X Band Center)</td>
<td>10.0</td>
<td>0.784</td>
<td>20.2</td>
<td>0.50</td>
<td>0.05%</td>
</tr>
<tr>
<td>15 GHz (Ku Band Center)</td>
<td>6.6</td>
<td>0.641</td>
<td>13.5</td>
<td>0.74</td>
<td>0.66%</td>
</tr>
<tr>
<td>26 GHz (Ka Band)</td>
<td>3.7</td>
<td>0.487</td>
<td>7.8</td>
<td>0.87</td>
<td>1.19%</td>
</tr>
</tbody>
</table>

All Antennas Fed with 50 Ω
All Truncations designed for -10 dB

![Graph](image-url)
Surface Current at Center Frequency
10 mil, Rogers 5880

S Band
2.5 GHz

K_a Band
25.5 GHz
AR < 1 dB
Left Hand and Right Hand CP
\(K_a \) Band

LHCP

RHCP
Substrate Thickness Variation Over Several Frequency Bands (Simulation)

- **10 mil**
 - Rogers 5880

- **62 mil**
 - Rogers 5880

![Graphs showing substrate thickness variation over frequency bands (Simulation) with S11 and Best Axial Ratio markers.](image-url)
Effect of
- Substrate Thickness
- Design Frequency
- Substrate Dielectric Constant

$\varepsilon_r = ???$
10 mil, Rogers 6006 ($\varepsilon_r = 6.15$)

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>L [mm]</th>
<th>a [mm]</th>
<th>λ_d [mm]</th>
<th>t/λ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 (S Band)</td>
<td>24.2</td>
<td>0.67</td>
<td>48.4</td>
<td>0.0052</td>
</tr>
<tr>
<td>6 (C Band)</td>
<td>10.1</td>
<td>0.44</td>
<td>20.2</td>
<td>0.013</td>
</tr>
<tr>
<td>10 (X Band)</td>
<td>6.0</td>
<td>0.34</td>
<td>12.1</td>
<td>0.021</td>
</tr>
<tr>
<td>15 (Ku Band)</td>
<td>4.0</td>
<td>0.29</td>
<td>8.1</td>
<td>0.032</td>
</tr>
<tr>
<td>26 (Ka Band)</td>
<td>2.3</td>
<td>0.22</td>
<td>4.7</td>
<td>0.055</td>
</tr>
<tr>
<td>40 (V Band)</td>
<td>1.4</td>
<td>0.18</td>
<td>3.0</td>
<td>0.084</td>
</tr>
</tbody>
</table>

All Antennas Fed with 50 Ω
All Truncations designed for -10 dB
Sub-Topics

- Single Element, Truncated Corner Patch Antenna
 - Patch Design
 - Initial Measurements
 - Effect of:
 - Substrate Thickness
 - Substrate Dielectric Constant
 - Design Frequency

- Design Suggestion to Eliminate S_{11} & AR Mismatch
Possible Method for High Frequency S_{11} and AR Alignment

$L = 3.749$ mm

Asymmetric

$w_o \approx 1.28\%$
$w_o \approx 1.57\%$
$w_o \approx 1.60\%$

3 dB Bandwidth

Frequency [GHz]
Asymmetric Patch Matched With $\lambda/4$ Transformer

$L = 3.749$ mm
$W = 3.674$ mm
- Single Element, Truncated Corner Patch Antenna
- Feed Network
- 2x2 Sub Array
Feed Network Design

- Circular Polarization Improved
 - Sequential Rotation
 - A 90° Geometric Rotation
 - Sequential Phase
 - A 90° Phase Rotation

Sequential Rotation, 90°
Sequential Phase, 90°
90° Electrical Length
K\textsubscript{a} Band Feed Network Design

Footprint: 199 mm2
Footprint: 375 mm2

Clever Use of $\lambda/4$ Line Lengths Allows Uniform Line Width and Compact Design

Unwieldy Feed Lines and $\lambda/4$ Transformers Increase Footprint and may Restrict $n \times n$ Array Design

K_a Band Feed Network Design

$\lambda/4$ transformers match impedance at branches.
K_a Band Feed Network Design
K_a Band Feed Network Design
Electrical Distance From First Tee Junction
- Single Element, Truncated Corner Patch Antenna
- Feed Network
- 2x2 Sub Array
2 x 2 Sub Array, 10 mil, Rogers 5880
\[a = 0.530 \text{ mm} \]

LHCP
25.7 GHz

RHCP
25.7 GHz
2 x 2 Sub Array, 10 mil, Rogers 5880
\[a = 0.530 \text{ mm} \]

LHCP
27.1 GHz

RHCP
27.1 GHz
Conclusion & Future Works

- Ideal antennas will have good overlap in S_{11} and AR bandwidth
- In addition to the known design equations, good choice in substrate thickness and dielectric constant is required
- The compact sub-array offers a nice size reduction, but coupling may reduce the CP performance
Questions?

LHCP
27.1 GHz

RHCP
27.1 GHz

Andrew Chrysler
andrew.chrysler@utah.edu