Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

Glen Bigelow,1 Anita Garg,2 Othmane Benafan,1 Ronald Noebe,1 Darrell Gaydosh,3 and Santo Padula II1

1NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135
2University of Toledo, Toledo, OH 43606
3Ohio Aerospace Institute, Cleveland, OH 44142

This work is funded by NASA’s Transformational Tools & Technologies Project

Presented at SMST 2017

Opportunities for SMA Actuators

NiTiPd is expensive
=> Actuators most likely wire based

Can be drawn to fine wire

Shape set to form springs, etc.

Vortex Generator

Access Panel Fasteners

Flow Control

In-Cabin Locks and Fasteners
• High temperature shape memory alloys (HTSMAs) formed by alloying with Au, Hf, Pd, Pt, or Zr.
• Ni-rich alloys: stability, bandwidth
• Tf Temps drop drastically with Ni content for Ni-rich alloys
• Compositional control with such precision is difficult
• Aging can be used to regain Tf temps.
• M_s: Martensite Start, M_p: Martensite Peak

Compositional Control is IMPORTANT!!!
Prior State of the Art

Low Temp, Ni-rich, dimensionally stable
Very high ppt volume

Current Alloys

High Temp, Ti-rich, poor dimensional stability

* Need to optimize chemistry and precipitation to achieve high temp (~200ºC) alloy with good work output
Approach

- Produce range of alloys having target Ti contents of 50.5, 49.7, and 49.2 at%:
 - Vacuum Induction Melting (VIM) in graphite crucible
- Age samples at various times and temperatures
- Determine microstructure as extruded and aged
- Load biased test in tension in series w/2 cycles per stress (MPa) level:
 - No-load, 50, 100, 200, 300, 400MPa, No-load
- Load biased cycle temperatures:
 - Ext 181: (50.5Ti) 30°C to 400°C
 - Ext 182: (49.7Ti) 30°C to 350°C
 - Ext 183: (49.2Ti) 30°C to 350°C
- Determine effect of aging on actuator type properties

Compositions and Heat Treats

<table>
<thead>
<tr>
<th>Ext 181</th>
<th>Ext 182</th>
<th>Ext 183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti<sub>50.5</sub>Ni<sub>17.5</sub>Pd<sub>32</sub></td>
<td>Ti<sub>49.7</sub>Ni<sub>18.3</sub>Pd<sub>32</sub></td>
<td>Ti<sub>49.2</sub>Ni<sub>18.8</sub>Pd<sub>32</sub></td>
</tr>
<tr>
<td>As Extruded</td>
<td>As Extruded</td>
<td>As Extruded</td>
</tr>
<tr>
<td>350C/24hr/AC*</td>
<td>350C/24hr/AC*</td>
<td>350C/24hr/AC*</td>
</tr>
<tr>
<td>350C/66hr/AC</td>
<td>350C/66hr/AC</td>
<td>350C/66hr/AC</td>
</tr>
<tr>
<td>350C/100hr/AC</td>
<td>350C/100hr/AC</td>
<td>350C/100hr/AC</td>
</tr>
<tr>
<td>400C/24hr/AC*</td>
<td>400C/24hr/AC*</td>
<td>400C/24hr/AC*</td>
</tr>
<tr>
<td>400C/52hr/AC</td>
<td>400C/52hr/AC</td>
<td>400C/52hr/AC</td>
</tr>
<tr>
<td>450C/24hr/AC</td>
<td>450C/24hr/AC</td>
<td>450C/24hr/AC</td>
</tr>
</tbody>
</table>

*Solutionized 1050C/24hr/WQ before aging.

Microstructure: As Extruded

- 50.5Ti: No Precipitates
- 49.7Ti: No Precipitates
- 49.2Ti: Precipitates (1-3nm)

Microstructure: 50.5Ti

As Extruded

350C/100hr

Ti rich: No Precipitates

Microstructure: 49.7Ti

As-Ext
No Ppts.

350C/66h
Ppts.
Av. Size
~ 50nm

400C/24h
Ppts.
Av. Size
~ 400nm

450C/24h
Ppts.
Av. Size
~ 500nm

200nm
50nm
200nm
50nm
500nm
200nm
Microstructure: 49.2Ti

As-Ext
Ppts.
Av. Size
~ 2nm

350C/66h
Ppts.
Av. Size
~ 60nm

400C/24h
Ppts.
Av. Size
~ 120nm

450C/24h
Ppts.
Av. Size
~ 250nm
Transformation Strain

Work Output

Austenite Finish

Unrecovered Strain

Optimization of Properties

Microstructure: 49.2Ti

As-Ext
Ppts. Av. Size ~ 2nm

350C/66h
Ppts. Av. Size ~ 60nm

400C/24h
Ppts. Av. Size ~ 120nm

450C/24h
Ppts. Av. Size ~ 250nm
49.2Ti Dynamic Creep Overview:
Shows Effect of Upper Cycle Temp

340°C UCT Training Increases Transformation Temperature

After Training Cycles, Transformation is Stable

10 Cycles @172MPa

340°C UCT

Sample Temperature (°C)

True Strain (%)
$\text{Ti}_{49.2}\text{Ni}_{18.8}\text{Pd}_{32}$ 350C/100hr

10 Cycles @172MPa

360ºC UCT

$\text{Ti}_{49.2}\text{Ni}_{18.8}\text{Pd}_{32}$ 350C/100hr

10 Cycles @172MPa

380°C UCT

Precipitates Coarsen/Grow

10 Cycles @ 172 MPa

400°C UCT

Precipitates Grow Faster

10 Cycles @172MPa

420°C UCT

Precipitates Grow Faster

10 Cycles @172MPa

440°C UCT

Aging Continues To Decrease Transformation Temp

10 Cycles @172MPa

460ºC UCT

Sample Temperature (°C)

True Strain(%)
Dynamic Creep Begins

10 Cycles @172MPa

480°C UCT

Dynamic Creep Dominates

10 Cycles @172MPa

500°C UCT

Dynamic Creep Dominates

10 Cycles @172MPa

520°C UCT
Higher UCT: Increases Tf Strain, Decreases Stability

Sample is Momentarily at the Upper Cycle Temperature, not Aged There

Dynamic Creep
Precipitate Coarsening

Ti Rich Material: Tf Temps Don’t Change

Conclusions

1. Decreasing Ti content
 1. Increases second phase content
 2. Decreases Tf Temp
 3. Decreases Work Output
 4. Improves Dimensional Stability

2. Aging Time/Temp Effects:
 1. Low Temp
 Small ppts – increase Tf Temp, decrease Tf Strain
 2. High Temp
 Large ppts – decrease Tf Temp, increase Tf Strain

3. Optimum Transformation Strain & Temp
 1. Low Temp (350ºC) aging for short times
 2. Moderate Temp (400ºC) aging for longer times
 1. Higher Unrecovered Strain