Ensuring Interoperability between Unmanned Aircraft Detect-and-Avoid and Manned Aircraft Collision Avoidance

David Thipphavong
Andrew Cone
Seungman Lee
Introduction

• RTCA Special Committee-228 is in charge of developing standards for Detect-and-Avoid (DAA) for Unmanned Aircraft Systems (UAS) in the United States

• UAS DAA systems enable UAS to satisfy regulations to remain well clear from and avoid collisions with other airborne traffic

• UAS DAA systems need to interoperate with collision avoidance (CA) systems onboard manned aircraft
 – Traffic Alert and Collision Avoidance System (TCAS) in the United States
 – Airborne Collision Avoidance System (ACAS) in Europe
UAS DAA systems must not provide guidance that is incompatible with Resolution Advisories (RAs) that manned aircraft receive from their collision avoidance system

• All RAs are vertical commands

RTCA SC-228’s Approach

• Restrict UAS DAA vertical guidance when UAS and manned aircraft are within a CA region:
 – No UAS altitude guidance
 – UAS vertical speed guidance is limited to UAS current vertical speed ± 500 ft/min (Londner, ATM2015)
Research Overview

Research Goal

• Evaluate RTCA SC-228’s CA region definition in the preliminary standards document in terms of interoperability with TCAS RAs and DAA alerts
• Develop alternative definitions and evaluate their interoperability

Outcome

RTCA SC-228 approved a new definition we recommended for the final standards document
CA Region Interoperability

Preferred order in encounters with TCAS RA

Not acceptable because UAS vertical maneuvers not restricted

Not acceptable because UAS vertical maneuvers not restricted

Minimize frequency for interoperability with DAA alerts
Summary of CA Region Interoperability

- **DAA alert issued**
- **Initial CA Region Crossing**
- **TCAS RA issued**

“Goldilocks” solution: Just right

Unacceptable: Restrict late

Acceptable: Restrict least often
Collision Avoidance Region

• Three CA region definition candidates evaluated

• Horizontal Components:
 – Horizontal Miss Distance \((HMD)\): Projected separation at closest point of approach (CPA) in the horizontal dimension
 – Modified \(\tau\) \((\tau_{\text{mod}})\): Projected time to CPA
 • Distance Modification \((DMOD)\): Minimum threat range boundary

• Vertical Components:
 – \(d_h\): Current vertical separation
 – \(ZTHR\): Projected vertical separation at CPA
 – Vertical \(\tau\) \((\tau_{v})\): Projected time to co-altitude
Loss of DAA Well Clear

• Loss of DAA well clear:
 \[0 \leq \tau_{\text{mod}} < 35\text{sec AND } HMD < 4000\text{ft AND } d_h < 450\text{ft} \]

• UAS Executive Committee Science and Research Panel coordinated research efforts by:
 – NASA
 – Massachusetts Institute of Technology-Lincoln Laboratory, and
 – United States Air Force Research Laboratory

• Feedback from the FAA and RTCA SC-228 incorporated
• DAA Warning alert (look-ahead time of 40 sec):
 \[0 \leq \tau_{mod} < 35\text{sec} \text{ AND } HMD < 0.75\text{nmi AND } d_h < 450\text{ft} \]

• Alert to the UAS pilot to execute a maneuver to remain well clear
“AND” Collision Avoidance Region Definition

- “AND” definition in the preliminary standards (mid-2015):
 \[0 \leq \tau_{\text{mod}} < 50\text{sec AND (}0 \leq \tau_v < 50\text{sec AND } ZTHR < 800\text{ft}) \]

- Utilizes subset of the components used in TCAS
“OR” Collision Avoidance Region Definition

- “OR” definition:
 \[0 \leq \tau_{\text{mod}} < 50\text{sec} \text{ AND } (0 \leq \tau_v < 50\text{sec} \text{ OR } ZTHR < 800\text{ft}) \]

- More similar to TCAS logic
“OR-h” Collision Avoidance Region Definition

- “OR-h” definition:
 \[0 \leq \tau_{\text{mod}} < 50\text{sec AND } (0 \leq \tau_v < 50\text{sec OR } d_h < 800\text{ft}) \]

- Utilizes current vertical separation like TCAS and DAA alerting
Summary of CA Region Definitions

• “AND” definition in the preliminary standards document:
 \[0 \leq \tau_{mod} < 50\text{sec} \quad \text{AND} \quad (0 \leq \tau_v < 50\text{sec} \quad \text{AND} \quad ZTHR < 800\text{ft})\]

• “OR” definition more similar to TCAS:
 \[0 \leq \tau_{mod} < 50\text{sec} \quad \text{AND} \quad (0 \leq \tau_v < 50\text{sec} \quad \text{OR} \quad ZTHR < 800\text{ft})\]

• “OR-h” definition utilizes current vertical separation like TCAS and DAA alerting
 \[0 \leq \tau_{mod} < 50\text{sec} \quad \text{AND} \quad (0 \leq \tau_v < 50\text{sec} \quad \text{OR} \quad d_h < 800\text{ft})\]
Data Collection
Approach

• 1.3 million simulated pairwise encounters between UAS and manned aircraft

• Combinatorial approach
 – Covers a wide range of horizontal and vertical closure rates, angles, and miss distances
 – Capture “corner cases” unlikely to occur in nationwide simulations
Encounter Details

- Straight-line, non-maneuvering pairwise encounters
- Simple kinematic trajectory modeler
- No uncertainty
- TCAS II version 7.1

- Recorded when TCAS RAs, CA region crossings, and DAA Warning alerts occur (if ever) for analysis

- 340k encounters
- 800k-1.1M encounters
Vertical Encounter Types

- Level-Level Encounters
- Level-Descent Encounters
- Level-Climb Encounters

UAS
Horizontal Encounter Types

Head-On Encounters

Overtaking Encounters

Crossing Encounters
Encounters with Non-Zero Miss Distances

Manned aircraft trajectory is offset horizontally

and also offset vertically

UAS

UAS

to evaluate performance of CA region definitions in encounters with non-zero miss distances
Encounter Parameters

1.3 million pairwise encounters between UAS and manned aircraft

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th># Values</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS ground speed</td>
<td>4</td>
<td>50, 100, 150, 200 kts</td>
</tr>
<tr>
<td>UAS heading</td>
<td>1</td>
<td>0 deg</td>
</tr>
<tr>
<td>UAS vertical speed</td>
<td>1</td>
<td>0 ft/min (fly level at 5000 ft)</td>
</tr>
<tr>
<td>Manned vertical speed</td>
<td>9</td>
<td>-2000, -1500, -1000, -500, 0, ..., 2000 ft/min</td>
</tr>
<tr>
<td>Manned heading</td>
<td>12</td>
<td>0, 30, 60, 90, 120, 150, 180, ..., 330 deg</td>
</tr>
<tr>
<td>Manned ground speed</td>
<td>5</td>
<td>50, 100, 150, 200, 250 kts</td>
</tr>
<tr>
<td>Horizontal manned trajectory offset</td>
<td>9</td>
<td>0 nmi: (x,y) = (0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5 nmi: (x,y) = (0.5, 0), (-0.5, 0), (0, 0.5), (0, -0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5 nmi: (x,y) = (1.5, 0), (-1.5, 0), (0, 1.5), (0, -1.5)</td>
</tr>
<tr>
<td>Vertical manned trajectory offset</td>
<td>7</td>
<td>-1000, -500, -250, 0, 250, 500, 1000 ft</td>
</tr>
<tr>
<td>UAS trial plan maneuver turn rate</td>
<td>2</td>
<td>1.5, 3 deg/sec</td>
</tr>
<tr>
<td>UAS trial plan climb/descent rate</td>
<td>5</td>
<td>(500, 500), (1000, 1000), (2000, 2000), (2000, 1000), (1000, 2000) ft/min</td>
</tr>
</tbody>
</table>
Result 1: “AND” Collision Avoidance Region Definition Not Suitable
“AND” CA Region Definition Not Suitable

The “AND” definition does not ensure that the CA region is always crossed before a TCAS RA is issued.

Even one case is unacceptable

Using “OR” and “OR-h” definitions resulted in no undesirable cases in which TCAS RA occurs before CA region is crossed.

% encounters with TCAS RA

- 6.2% for “AND"
- 0% for “OR” and “OR-h”
Slow Vertical Closure Rate when TCAS RA was issued before the “AND” CA region was crossed

“AND”

$0 \leq \tau_{mod} < 50\text{sec}$ AND $(0 \leq \tau_v < 50\text{sec} \text{ AND } ZTHR < 800\text{ft})$

UAS

Vertical separation: 592 ft
Vertical closure rate: 500 ft/min (i.e., converging)
Vertical tau: 71.0 sec

Horizontal separation: 0 nmi
Horizontal closure rate: 0 kts
Horizontal encounter angle: 0 deg
Modified tau: 0 sec

Manned aircraft TCAS issues RA because current vertical separation is less than 600 ft
But, “AND” CA region not crossed due to slow vertical closure rate

“AND” definition does not capture slow vertical closure rate cases
--> Need to use “OR” like in TCAS
The “AND” definition does not ensure that the CA region is always crossed before a TCAS RA is issued.
Level-Level Encounter when TCAS RA was issued without the “AND” CA region ever being crossed

“AND”

\[0 \leq \tau_{\text{mod}} < 50\text{sec} \ \text{AND} \ (0 \leq \tau_v < 50\text{sec} \ \text{AND} \ ZTHR < 800\text{ft}) \]

Vertical separation: 500 ft
Vertical closure rate: 0 ft/min
Horizontal separation: 1.17 nmi
Horizontal closure rate: 200 kts (i.e., converging)
Horizontal encounter angle: 180 deg (i.e., head-on)
Modified tau (DMOD 1.1 nmi): 2.4 sec

“AND” definition does not capture zero vertical closure rate cases
--> Need to use “OR” like in TCAS

Manned aircraft TCAS issues RA because current vertical separation is less than 600 ft
But, “AND” CA region not crossed because aircraft in level-level encounter with offset are never co-altitude
Result 2: “OR-h” Collision Avoidance Region Definition has Lower Non-Interoperability with DAA Warning Alerts
"OR-h" CA Region Definition has Lower Non-Interoperability

The "OR-h" definition restricted vertical guidance at DAA Warning alerts less often

% encounters with CA region crossing

<table>
<thead>
<tr>
<th></th>
<th>"OR"</th>
<th>"OR-h"</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.8%</td>
<td></td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Fewest is preferable
High Vertical Closure Rate when “OR” CA region was crossed before DAA Warning alert was issued

“OR”

\[0 \leq \tau_{\text{mod}} < 50\text{sec} \text{ AND } (0 \leq \tau_v < 50\text{sec} \text{ OR } ZTHR < 800\text{ft}) \]

Vertical separation: 2033 ft
Vertical closure rate: 2000 ft/min (i.e., converging)
Vertical tau: 61 sec
Predicted vertical separation at CPA: 0 ft

Horizontal separation: 2.54 nmi
Horizontal closure rate: 150 kts (i.e., converging)
Horizontal encounter angle: 180 deg
Modified tau (DMOD 1.1 nmi): 49.5 sec

“OR” CA region is crossed because the two aircraft are predicted to have 0 ft of vertical separation at CPA
But, there is no DAA alert or “OR-h” CA region crossing since vertical separation at this time is more than 800 ft

“OR” definition is too conservative in high vertical closure rate cases due to ZTHR

--> Use current vertical separation like in DAA Warning alert
Concluding Remarks
Recommendation to RTCA SC-228

Recommended changing CA region from the “AND” definition in the preliminary standards document to the “OR-h” definition in the final standards document: \(0 \leq \tau_{\text{mod}} < 50\text{sec AND (}0 \leq \tau_{v} < 50\text{sec OR } d_{h} < 800\text{ft)} \)

- “OR-h” is most interoperable with TCAS and DAA Warning alerts because it uses:
 - “OR” operator instead of “AND” operator for the vertical conditions
 - Current vertical separation instead of predicted vertical separation at CPA

- “OR-h” definition was accepted by RTCA SC-228 for the final standards document for UAS DAA systems
Future Directions

• Encounters in which UAS climb and descend
• Encounters in which UAS and manned aircraft maneuver

• Uncertainty:
 – Sensor models
 – Tracker models
 – Pilot models

• ACAS Xa (active) for manned aircraft
• ACAS Xu (unmanned) for UAS
Recommendation to RTCA SC-228

Recommended changing CA region from the “AND” definition in the preliminary standards document to the “OR-h” definition in the final standards document: $0 \leq \tau_{\text{mod}} < 50\text{sec AND } (0 \leq \tau_{v} < 50\text{sec OR } d_{h} < 800\text{ft})$

- “OR-h” is most interoperable with TCAS and DAA Warning alerts because it uses:
 - “OR” operator instead of “AND” operator for the vertical conditions
 - Current vertical separation instead of predicted vertical separation at CPA

- “OR-h” definition was accepted by RTCA SC-228 for the final standards document for UAS DAA systems

Questions?
Email: david.p.thipphavong@nasa.gov