Global statistics of microphysical properties of cloud-top ice crystals

Bastiaan van Diedenhoven,1 Ann Fridlind,3 Brian Cairns,1 Andrew Ackerman,2,3 Jérôme Riedi1

1: Introduction
Ice properties are important for radiation, cloud evolution, precipitation efficiencies, etc. Ice properties are known to vary with, e.g., temperature, humidity (see Fig. 1 left and below), and ice nuclei availability. Determining such relationships in the complex atmosphere remains elusive.

2: Optical properties of ice crystals

- Ice number
- Shape scattering
- Phase function
- Ice thickness

Ice crystal shape characteristics mostly determine phase functions:
1. Aspect ratio of crystal components (meso-scale)
2. Surface roughness, distortion, impurities or cavities (micro-scale)
3. Habit (macro-scale)

We focus on micro- and meso-scale since they are far more important than the macro-scale (habit). Also ‘habit’ is non-quantifiable. Simple hexagonal plates and columns are used as proxies for complex ice.

3: Shape and asymmetry parameter retrieval approach

Aspect ratios and roughness of proxy hexagonal prisms are retrieved by matching multi-angle polarised reflectance at 120-150° scattering angles with a model. The relation between polarisation and aspect ratio and roughness can be seen on the right.

The asymmetry parameter is uniquely determined by aspect ratio and roughness as shown below.

4: Data
- POLARIS-MODIS calibrated data at 6.5 km resolution for 2007
- MODIS collection 6: effective radius and optical thickness and height
- Conservative ice cloud filter: POLARIS-MODIS phase index = extra rainbow detection phase index

5: Definitions
- Aspect ratio a is defined by the Length and Width of hexagonal prisms
- Effective radius: defined by the total volume (mass/void ice density) and area
- Ice crystal roughness: is a optical proxy for any microscale distortion of a smooth, radiating ice crystal
- Other, similar parameterizations obtain similar results

6: Global distribution of average optical thickness (of ice clouds with e-r)

High, cold clouds
Low, warm clouds

7: Yearly-averaged global distribution of cloud-top properties

Effective radius
Aspect ratio
Roughness
Asymmetry parameter

8: Seasonal variation of profiles (for ice clouds over ocean with e-r)

9: General tendencies

- Effective radius
- Asymmetry parameter
- Aspect ratio
- Roughness

10: Impaired % bias on MODIS C6 retrieved r and a from constant asymmetry parameter

MODIS collection 6 retrieves an ice model with an asymmetry parameter of 0.754 in the visible.

When the real asymmetry parameter is e.g. this assumption creates biases of $(a-0.754) \times 100\%$, as seen below. Maps on the right show average biases.

11: Notes
- Most of the crystals are identified as plate-like
- Roughness is often found to be its minimum value of 0.7
- Results are filtered for acceptable RMS value for fit
- Ocean surface is assumed for low optical depths

References
van Diedenhoven et al. 1, 3, ANT 2012
Fridlind et al. 3, 2010
Cairns et al. 3, 2015
Ackerman et al. 2, 2015
Ackerman et al. 2, 2016
Cziczo et al. 2, 2009
J. Atmos. Chem. 2009