A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

Manuela Girotto¹,², Steven Margulis³, Gonzalo Cortes³, Michael Durand⁴

¹Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
²GESTAR, Universities Space Research Association, Columbia, MD, USA
³Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA
⁴School of Earth Sciences, and Byrd Polar Research Center, The Ohio State University, Columbus, Ohio, USA

5th International Conference on Reanalysis
Rome, Nov 13-17, 2017
Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions
Importance of Snow

Water Balance Prospective:
- Water Reservoir
- Snow Water Equivalent (SWE, i.e. the amount of water stored as snow)

Energy Balance Prospective:
- High Snow Albedo
 (Strong influence on land-atmosphere interaction, weather and climate feedbacks)

We need accurate estimates of SWE →
Accurate water, weather, climate forecasts.

Barnett et al., (2005), Nature
Snow Bias in Global Reanalysis Datasets

OBSERVATIONS

- a) UA Maximum SWE (mm)
- b) SNODAS Maximum SWE (mm)
- c) ratio(CFSR to UA)
- d) ratio(ERA-I to UA)
- e) ratio(ERA-I/Land to UA)
- f) ratio(MERRA to UA)
- g) ratio(MERRA-Land to UA)
- h) ratio(MERRA2 to UA)

REANALYSES

- Panels c-h (-)

Broxton et al., (2016), JHM

- SWE is underestimated
- Larger biases in deep snowpack
- Biases marginally explain by spatial resolution and snowfall biases

Need to provide unbiased reanalysis estimates of SWE
Snow Modeling

Snow processes are known to be a weakness of land surface modeling:
- Insufficient winter precipitation forcings
- Complexity of Mountainous Environments

But, models are good because providing continuous (space/time) estimates of SWE and FSCA

Snow Observations

- **In-Situ Observations**
 - Direct Observations
 - Sparse in Space/Time
 - Insufficient (global) Network

- **Satellite Observations**

 1) Passive Microwave (e.g., SSM/I; AMSRE-E)
 - All weather
 - Daily, 25 km
 - 1987 – present
 - Sensitive to Snow Depth
 - But only shallow SWE

 2) Visible/Near-infrared (e.g., Landsat, MODIS)
 - Daily-Weekly, sub-km scales
 - 1984 – present
 - Clear-sky only
 - No direct estimate of SWE
 - Only Fractional Snow Cover Area (FSCA)

None of these streams can (alone) provide accurate estimates of SWE
Presentation outline

- Motivations

- A Method for Snow Reanalysis

- Proof of Concept: Sierra Nevada Case

- Conclusions
Snow Reanalysis Concept

Reconstruction of SWE from:
- Depletion of fractional snow covered area \([FSCA]\)
- Space/Time continuous energy fluxes
- SWE as a sum of melt \((m_i)\) events

Use satellite observed FSCA to estimate SWE!!

Girotto et al. (2014); HP

Cline et al. (1998), WRR

Example FSCA depletion
(Tokopah Watershed, California)

FSCA depletion

April

May

Jun

July

Use satellite observed FSCA to estimate SWE!!
Snow Reanalysis Concept

Example FSCA depletion
(Tokopah Watershed, California)

Reconstruction of SWE from:
- Depletion of fractional snow covered area [FSCA]
- Space/Time continuous energy fluxes
- SWE as a sum of melt \((m_i) \) events

Probabilistic Approach
(Ensemble Kalman Smoother)

Girotto et al. (2014); HP
Sequential vs. Smoothing Schemes

Sequential schemes (e.g., EnKF)

\[[\Delta x]_t = K_t [M(x^t) - \text{obs}]_t \]
\[K_t = C_{xM} [C_{MM} + R]_t^{-1} \]

\(t \): time when the \(\text{obs} \) is available!

\(\text{Obs} = fSCA; \Delta x = \Delta SWE; C_{xM} \) Relies on instant. \(fSCA \leftrightarrow SWE \)

Smoother schemes (e.g., EnKS, or PS)

\[[\Delta x] = K [M(x^t) - \text{obs}] \]
\[K = C_{xM} [C_{MM} + R]^{-1} \]

\(\text{Obs} = fSCA \) for the entire ablation season

\(\Delta x = \Delta SWE; C_{xM} \) obtained from a batch of \(fSCA \leftrightarrow SWE \)

- Deeper snowpacks
- No real-time applications
- Useful in for reanalysis

Good for ephemeral SWE only;
weak correlation \(fSCA \leftrightarrow SWE \) for deep SWE

Andreadis and Lettenmaier (2006), AdWR

Obs. OL DA
Presentation outline

- Motivations
- A Method for Snow Reanalysis
- Proof of Concept: Sierra Nevada Case
- Conclusions
The Sierra Nevada Example

- Landsat observations (Landsat 5-8 record)
- Forcings: NLDAS
- Temporal Extent: 31 years
- Spatial resolution: 90 m
- Temporal resolution: daily
- Analysis: Particle Smoother
- Maritime snowpack (max. SWE ~1-2m)

• Validation:
 - 108 snow-pillow
 - 202 snow-courses
The Sierra Nevada Example

- Landsat observations
 (Landsat 5-8 record)
- Forcings: NLDAS
- Temporal Extent: 31 years
- Spatial resolution: 90 m
- Temporal resolution: daily
- Analysis: Particle Smoother
- Maritime snowpack (max. SWE ~1-2m)
Example: American River Watershed:
- \(f_{\text{veg}} = 52\% \),
- \(\text{elev} = 2400 \text{ m} \);
- co-located pillow/snow course data

2. Prior vs. Obs mismatch (post fits the obs. by design)

3. Reduced SWE biased, & uncert.

(Margulis et al. 2016; JHM)
The Sierra Nevada Example

SWE estimates validated against >9000 station-years (snow pillow & snow course data)

SWE statistics show encouraging results:

- ME ~ -2 cm
- RMSE ~ 12 cm
- Corr. ~ 0.96

(Margulis et al. 2016; JHM)
Presentation outline

- Motivations

- A Method for Snow Reanalysis

- Proof of Concept: Sierra Nevada Case

- Conclusions
Conclusions & Future Directions

• This SWE reanalysis provides **unbiased** estimates of SWE even for **large snowpacks** (at least for the Sierra Nevada Mountains)

• SWE reanalysis provides an **unique** dataset in terms of large spatial/temporal extent, high spatial/temporal resolution, accuracy

• Batch (or **smoothing**) approaches need to be used (as opposed to sequential techniques) to assimilate the entire FSCA depletion

• The next step is to test the validity of the methods for **global reanalysis**
Thanks!!!

A Method for Snow Reanalysis: The Sierra Nevada (USA) Example

Manuela Girotto¹,², Steven Margulis³, Gonzalo Cortes³, Michael Durand⁴

5th International Conference on Reanalysis
Rome, Nov 13-17, 2017