Climate reanalysis: progress and future prospects

Ron Gelaro
Global Modeling and Assimilation Office
NASA Goddard Space Flight Center

Third Symposium on Multi-scale Predictability: Data-model Integration and Uncertainty Quantification for Climate and Earth System Monitoring and Prediction

AMS 98th Annual Meeting, Austin, Texas, 7 – 11 January 2018
Acknowledgment

Special thanks to Adrian Simmons of ECMWF, who graciously provided the material that appears on several slides in this talk.

See his keynote address at the 5th International Conference on Reanalysis: https://climate.copernicus.eu/sites/default/files/repository/Events/ICR5/Talks/Simmons_keynote_ICR5_13pm.pdf
Reanalysis is the process whereby a *fixed* modern data assimilation system is used to provide a consistent reprocessing of observations, typically over an extended period.

The **data assimilation** blends information from:

- many types of observations
- a short “background” model forecast
- estimates of observational and background errors, including biases
- dynamical relationships used in the representation of background errors
Total Ozone (DU)

Data versus data assimilation
Development of atmospheric observations up to 1979

Early years
- Growth of network of surface measurements
- Development of measurements from balloons

1940s
- Establishment of network of radiosonde measurements from North Atlantic and North Pacific Weather Ships

1957
- Radiosonde network enhanced in southern hemisphere for the International Geophysical Year

1972
- Operational sounding of temperature and humidity from polar-orbiting satellite
- Some data from commercial aircraft

1979
- Improved sounding from polar orbiters
- Winds from geostationary orbit
- Much more data from commercial aircraft
- Drifting buoys
Global modeling became established for climate in the 1960s, and global systems for numerical weather prediction were introduced at NMC (NCEP) and ECMWF in the 1970s.

ECMWF and GFDL produced analyses for 1979 from Global Weather Experiment data.

Analysis datasets were quite extensively used, but soon supplemented by global analyses from operational weather forecasting for multi-year studies.

Frequent operational changes clouded the picture, leading to a call for reanalysis (Trenberth & Olson, 1988). Bengtsson & Shukla (1988) made a more specific proposal for atmospheric reanalysis of the period 1979–1988 ...

…and stated that the concept is equally applicable to the ocean and biosphere, and that reanalyses would be “quite useful for studying global climate change”

Bengtsson and Shukla, BAMS, 1988
The first multi-year reanalyses were produced in the early to mid 1990s

A second round of production followed

And a third

A fourth round is proceeding
MERRA-2 (1980– …) is now up-to-date and continues close to real time
ERA5 production is well advanced
JRA-3Q is planned to enter production in Japanese Fiscal Year 2018
CRA-40 will be produced by CMA using NOAA/NASA, NCAR systems; planned completion 2020
Atmospheric observations since 1979

Satellites become dominant...

Rain-sensitive **microwave imagery** data in substantial numbers since 1992

Surface wind information from **scatterometry** since 1992

ATOVS (AMSU/MHS and improved HIRS) sounding starts in 1998; MSU & SSU end in 2006

Hyperspectral infrared sounding since 2002

Microwave limb sounding (Aura MLS) from 2004–20??

GNSS (GPS) radio occultation data in substantial numbers since 2006

…
Significant amounts of GPSRO data assimilated in ERA-Interim but not in MERRA

A. Simmons, ECMWF
Tropical tropopause temperature

12-month running-mean tropical-mean 100hPa temperatures (°C)

Significant amounts of GPSRO data assimilated in ERA-Interim and JRA-55

A. Simmons, ECMWF
Assimilating GPSRO data brings reanalyses together from 2006, and gives confidence in the earlier values from ERA5 and MERRA-2.

Significant amounts of GPSRO data assimilated in all except MERRA

A. Simmons, ECMWF
Use of reanalyses in operational forecasting

‘Reforecasts’ from reanalyses help assess and improve the performance of operational forecasts

- Quantify contributions to improved skill:
 - the overall observing system
 - satellite data coverage
 - satellite data assimilation

Also used to:
- Estimate the model climate distribution to predict extremes as seen by the model
- Calibrate seasonal forecasts by computing the model error relative to the reanalysis

From Dee et al. 2014
Reanalysis diversification and coupling

Reanalyses have become more diverse, with varied but generally increasing levels of coupling

- **Land**
 - coupled with the atmosphere, possibly using observed instead of model precipitation
 - stand alone and possibly downscaled

- **Atmospheric composition**
 - trace species in addition to ozone, driven by or coupled with the atmosphere
 - aerosols, reactive chemical species, GHGs

- **Ocean circulation**
 - possibly including sea-ice or biogeochemistry

- **Coupled atmosphere-ocean-land**
 - strongly or weakly coupled
 - moving closer to Earth-system reanalysis
Aerosol data assimilation in MERRA-2

Observations of total column AOD number ~900K per day since 2001, (compared to ~100M per day currently available for NWP)

In MERRA-2 the meteorological and aerosol analyses are performed separately but aerosols feed back to meteorology via the AGCM radiation

MERRA-2 time series of aerosols over Asia and northern Africa, showing regionally dominant species and major volcanic eruptions
Mt. Pinatubo eruption in MERRA-2

- Co-evolution of gaseous SO$_2$ emissions from Pinatubo (left) and formation of the sulfate aerosol plume (right) as SO$_2$ is converted into particles.
- SO$_2$ gas is from emissions inventories and unconstrained by assimilation. Sulfate aerosol AOD is impacted by the assimilation of total aerosol AOD.
Coupling the atmosphere and ocean

Essential for improving reanalysis and seasonal-to-decadal prediction, but also an increasing priority for NWP

- Physical consistency
- Improved use of observations, especially near the interface
- Reduced uncertainty

For reanalysis, consider the fact that the best available observational estimates of global sea surface temperature cannot be considered reliable on time scales less than a month or so in the pre-satellite era. (Dee et al. 2014)
But how much coupling?

A single analysis with explicit coupled background error covariances...

Separate analyses with outer loop (incremental) coupling to generate implicit cross-component correlations...
Information exchange in a coupled assimilation system

Temperature cross-section in the ECMWF CERA coupled ocean-atmosphere data assimilation system

Ocean increment (assimilation of one temperature observation at 5-meter depth) spreads in the atmosphere during the assimilation process

(Laloyaux et al. 2016, QJRMS)

More recent work shows the similarity of these cross-correlations to the explicit ones used in a simple coupled Kalman filter (previous slide)
Development of the ocean observing system

Sea surface temperature data evolve from buckets to engine intakes, drifting buoys and (from the early 1980s) satellites

Sea ice data from microwave imagery began in 1978

Temperature and salinity profiles from ship transects (XBTs and CDTs) increased from the 1960s to the 1990s

Tropical moored array was built up 1984–1994 under the WCRP TOGA programme

Sea level has been sensed from space since late 1992

Argo profiling-float network was established between 2003 and 2007, and expanded thereafter

… and more …
Prospects for improved forecast skill with coupling...

Comparison of forecast skill from reanalyses with and without coupled atmosphere-ocean data assimilation

- **ERA-20C**: ECMWF centennial atmospheric reanalysis of surface conventional observations only
- **CERA-20C**: Like ERA-20C atmosphere but with coupled assimilation of ocean salinity and temperature profiles

At the 60% threshold, forecast skill is improved by roughly 12 hours in 1990 and by almost 24 hours in 2010 between ERA-20C and CERA-20C

Courtesy P. Laloyaux, ECMWF
...but plenty of challenges remain

Lack of observational constraints on the sub-surface ocean

This leads to discontinuities in ocean heat content across the different reanalysis “streams”, which worsen with increasing depth.

Transfer of positive feedbacks, but also biases

In CERA-20C, sea-ice gets very thick in the Arctic, with an increase in the Antarctic as well - insufficient melting in summer (ORA-20C is an uncoupled ocean reanalysis).
Inclusion of reactive chemical species

Major role in radiative physics, with impact on temperature and dynamics, as well as air quality implications

Climate-relevant species
- CO$_2$, CH$_4$, N$_2$O, stratospheric O$_3$

Air quality-relevant species
- CO, NOx, tropospheric O$_3$

Also **carbon cycle** applications, with the potential to inform meteorological analysis, but still large model and observational biases
The observing system for chemical data assimilation

Pre-EOS era
Few satellite observations, primarily stratospheric ozone

EOS era
The golden age of stratospheric chemistry begins, satellite observations of ozone, methane, CO, CO$_2$, ... greatly increase the prospects for chemical data assimilation

Current and near future
Observations for chemistry-climate remain plentiful, but increasing focus on observing systems for air-quality and carbon cycle applications

2009: Carbon observing network
Sparse, fixed observing network (TCCON and NOAA), long latency

2017: Sentinel-5P TROPOMI
Launched 13 Oct 2017, global map of CO shows high levels over parts of Asia, Africa and South America

Observing carbon then ...and now
Analyzed Global Health Air Quality Index

Combines O₃, NO₂ and PM₂.₅ based on GEOS and GEOS-Chem
Evaluation is the key to establishing confidence

What data are assimilated? How well do the background and analysis fit these data?
How does this change over time?

How large are the changes made each assimilation cycle? How do the changes vary in space and time?

How do reanalyses compare with one another and with any alternative observation-based datasets for a particular variable?

How well do reanalyses fit independent data? How well do they perform locally?

How consistent are their global budgets? How small are any adjustments made to ensure balance?

Twelve-month running averages of global mean surface temperature from 1979 onwards for two recent reanalyses and two conventional data sets show good agreement (Simmons et al. 2016)
Final remarks

Four generations of reanalyses with improving quality and diversity, now a staple of Earth science research, operational forecasting and, increasingly, business sectors such as energy, agriculture, water...

The recent extension of forecast systems that allow integrated modeling of meteorological, land, oceanic, and chemical variables provide the basic elements for fully coupled DA and offer the prospect of improved reanalyses (and forecasts) through better use of observations in all components, especially at their interfaces.

Increased system complexity will inevitably lead to additional assumptions and practical decisions to make implementation feasible but, ultimately, realistic results are possible only if the additional degrees of freedom can be adequately constrained by observations.

While not uncontroversial, reanalysis arguably offers the best potential for extracting maximum information about the recent climate from the total instrument record by using models to relate and combine information from otherwise disparate observations (Dee et al. 2014).

Quantifying uncertainty in reanalyses remains an important challenge for increasing their utility, especially as a tool for climate change assessment. Evaluation (and more evaluation!) is the key to increasing confidence.