Study of Tools for Command and Telemetry Dictionaries

Craig Pires
NASA Ames Research Center

FSW Workshop 2017
Spacecraft and Ground FSW needs

- **Spacecraft Defined by data**
 - Commands - Formatted to the Spacecraft
 - Telemetry – From the Spacecraft
 - Ground Software
 - Subsystem Teams
 - Command and Data Handling (C&DH)
 - Electrical Power System (EPS)
 - Guidance, Navigation and Control (GN&C)
 - Third Party Vendors
 - Science Payloads

- **Flight Software needs to figure out how to talk to all of it.**
 - And not do it multiple times for each use (Simulink, C Code, ITOS, …)
Our early approach – C&T Database

- LADEE – Integrated Command and Telemetry Database (Mostly…)
 - Shared between C&DH Flight Software, Simulink Models and ITOS
 - Other data analysis tools leveraged

- Not for all data uses:
 - Legacy source code. (cFS was hand inserted into C&T DB)
 - Created “Pass-Thru” Commands
 - Mostly just Commands and Telemetry (Packets)
 - Other systems for: Parameter Tables, Temperature Calibration Curves
 - Monstrous Excel Spreadsheets
 - Spreadsheet difficult to maintain
Next Step - SCIMI

- SCIMI – System Configuration Information & Mission Interfaces
- Relational Database based off of Django
- Address limitations of previous “LADEE” approach
 - Full Command & Telemetry plus…
 - Produces Simulink tables products
 - Handle other cFS tables
 - Calibration Curves
 - Consumes YAML and uses Python for product generation
 - Infrastructure entirely Python
 - Built-in Embedded web GUI and command-line interfaces
 - *Light on* documentation
 - Extremely customizable per mission (almost too much, meaning not out-of-the-box)
SCIMI Logical Flow

Modify & view data in the database via a GUI.

View data in the database via a GUI

Webpage serving as GUI

Urls

Tells us what is to be called when a user is interested in navigating to a certain page

YAML Dump

Webserver

Set up dynamic user interfaces with embedded code

Create necessary tables & ORMS

Model/Relational DB

Data source
SCIMI In’s & Out’s

- Ground Products (itos, assist, etc)
- Docs (C&T Dict, ICDs)
- Spread Sheets (xls, csv)
- Web-based interaction
- Text Archival (YAML, JSON, XML)
- MATLAB (I/F, tunables)
- C Headers
- Engr. Drawings

Django – Relational DB

Web-based interaction

Django – Relational DB

Web-based interaction
New Development - CCDD

- CCDD – Core Flight System (cFS) Command and Data Dictionary
- JSC Developed, officially NASA Open-Sourced
 - These are two tools similar GIT vs Subversion
- Central SQL Database - (PostgreSQL)
- Infrastructure implemented in Java
- Multiple sources and products
 - Consumes CSV, JSON, EDS, and XTCE and uses JavaScript, Python, Ruby, Groovy, etc… for product generation
 - Highly customizable due to variety of input and output formats
- Embedded web GUI and command-line interfaces
- Extremely well documented
CCDD Logical

Project Database

CCDD

Script Access

Embedded Web Server

JSR-223 Scripts
JavaScript, Python, Ruby, Groovy, etc.

CSV Files

JSON Files

XML Files
EDS, XTCE

Clipboard

Web Applications

Output Files
C headers, ITOS record and display, etc.
What to Do? (SCIMI vs CCDD)

- Struggled to keep consistency with tools
- Problems with “Clone and Own”
- Looking hard at transitioning to CCDD – Test Implementation
- Creating needed CCDD Additions for us.
 - Simulink
 - Strength of DB tools is – adapter/translator

Todo for Us
- Interfaces to additional data analysis tools
- Data Marshalling - Translation
- Possible – Database flexibility
What did we need to do to implement CCDD test for RP?

• Every mission has slightly different approach
 • Command and Data Dictionary tools need flexibility
 • CCDD provides such flexibility through table customization
 • In addition, provides full API for interaction with database

• Slight modifications to infrastructure
 • Facilitated by tool creators
 • Particularly relevant for Model Based Design code auto-generation
 • Not too much needed because of high customizability of tables
 • Namely the ability to add “data fields” to tables that uniquely identify information contained therein
 • For example, “Produce REC” and “Simulink App” boolean data fields for structures

• Most modification done to scripts that generate products
 • Again, primarily to facilitate specific products for MBD auto-generation
Summary

• Space Missions are defined by data
• Tools for Managing make it much simpler and reduce errors
• CCDD and SCIMI are two tools for managing that data
 • Both have strengths and weaknesses
 • Tools themselves need support
• Evaluation of tools based on project/mission needs
Backup
Implementation Details

Common issues for all tools

• Maintenance of the tools
• Which group “Owns” the Database through the Project?
 • Start with FSW
 • Transition to Mission Operations
 • Science Operation Requirements?

• What Tools?
 • FSW Development.
 • Integration and Test
 • Mission Operations
 • Science Operations

• Procedures for modification?
• Backup and CM issues?
SCIMI vs CCDD

SCIMI

- Pros:
 - Django
 - Powerful/Flexible Database Tool
 - Database agnostic
 - Met mission needs

- Cons:
 - Need for internal mission support
 - Lack of documentation
 - Mission specific implementation

CCDD

- Pros:
 - Complete implementation – with API
 - Mission/project agnostic
 - Well documented

- Cons:
 - Customization needed for missions
 - Needed script development (Simulink)