Application of CFS to a Lunar Rover:
Resource Prospector (RP)

Howard Cannon
RP Rover Software Lead
NASA-Ames Research Center
The Hunt for Lunar Volatiles

Clementine (1994):
Curious bi-static radar findings at the poles...
Water-ice?

Lunar Prospector (1998):
Shadowed craters contain elevated Hydrogen levels...
Water-ice?

LCROSS/LRO (2009):
Yes! Water-ice. How is it distributed?

RP (2022):
Prospect for water-ice on human scales and demo ISRU processing
• Mission to Lunar Pole to search for and characterize the water ice
 – What form (eg. Snow or Ice lens?)
 – How much water is there?
 – How deep is it?

• Lunar Rover with:
 – Prospecting instruments to search for ice deposits
 – Drill to extract samples from the subsurface
 – Oven to bake the samples and scientific instruments to study its contents

• Developed and demonstrated a first prototype in 2015
• Currently scheduled to launch in 2022
RP15 Distributed Operations Test testing
2015-08-21

NASA-ARC Mission Control room driving RP15 rover

RP15 rover @ NASA-JSC Rock Yard

NIRVSS Payload Operations

NASA-KSC Payload Control room
Software Process

- Guiding documents:
 - NASA Software Engineering Handbook
 - 7150.2B NASA Software Engineering Requirements
 - NASA-STD-8739.8 NASA Software Assurance Standard
 - APR8070.2 Class D Spacecraft Design & Environmental Test

- Processes based on LADEE experience
 - Incremental Development Process
 - FSW Model based development technique

- Leverage Heritage Software
 - VxWorks, CFE/CFS, & LADEE C&DH Software
 - JSC Rover Control Software
 - Ames Rover Software (VERVE, Mapping, Path Planning, Hazard Detection, etc).

- Incremental Development:
 - 6 Builds, 2 releases
 - Each build has “theme of development” for focusing activities
 - First release fully functional – occurs prior to start of Rover I&T
 - Second release for bug fixes and late changes to requirements – occurs during Rover I&T
 - Test Early, Test Often
RFSW Model Based Development

Requirements → Design/Algorithm Development

Heritage Models → Flight Software Modeling → Vehicle & Environment Modeling

Workstation Simulations (eg. Simulink) → Code Generation

Hand Developed Apps → Unit Tests

Integrated Tests Processor-in-the-Loop Hardware-in-the-Loop → Automated Reporting

Analysis

Verification

Information contained in this presentation is not subject to Export Controls (ITAR/EAR)
Results

- RP15 mission in a year met all objectives
 - Rover (and Software) developed on time and within cost constraints
 - Successful demonstration of remote operations
 - Demonstrated effective use of heritage software (CFE/CFS, JSC Controls) and processes (LADEE).
- CFE/CFS architecture did not impose significant limitations
 - Distributed control system allowed reasonable control loop frequencies
 - Event based sequences not necessary with human-in-the-loop decision making and limited autonomy
 - Limit Checker sufficient for “phone home” fault management approach
Future Software Challenges

- Impact of limited visibility, shadows, and occlusions
 - Stereo and Localization studies using Lunar Lab Environment
- Communication Delays and Limited Bandwidth
 - Studying impact of onboard compression algorithms
- Impact of Excessive Slip and Embedding
 - Ongoing analysis and testing
- Multi-path effects and potential loss of Comm
 - Fault Management discussions ongoing
- How to drive effectively given constraints
 - Development of high fidelity driving conops simulator