Probabilistic Asteroid Impact Risk Assessment for the Hypothetical PDC17 Impact Exercise

Lorien Wheeler, Donovan Mathias
Asteroid Threat Assessment Project
Engineering Risk Assessment Team
NASA Ames Research Center

Planetary Defense Conference
May 15-19, 2017 – Tokyo, Japan
Impact Risk Assessment Summary

 • Impact scenarios and trajectories are developed and provided by NASA’s Near Earth Objects Office at JPL (Paul Chodas).
 • These results represent purely *hypothetical* impact scenarios, and do *not* reflect any known asteroid threat.

• Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center.

• This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercise
 • Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference.
 • Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.
INJECT 1 (S05): MAY 15, 2017
Swath Trajectory Parameters
Asteroid Parameter Distributions

Class & Structure Distribution

-

Diameter Distribution, Inject 1 (s05)
-

H-mag Distribution, Inject 1 (s05)
-

Albedo Distribution, Inject 1 (s05)
-

Density Distribution, Inject 1 (s05)
-

Impact Energy Distribution, Inject 1 (s05)
-

Cc (2%)
Cc (6%)
Cr (31%)
Sc (13%)
Sf (10%)
Sr (39%)
Blast Damage Zones

- 1-2 psi
- 2-4 psi
- 4-10 psi
- 10+ psi

L. Wheeler, D. Mathias
Mean Affected Population
Mean Affected Population
Damage Ranges (min/mean/max)
Damage Level Probabilities

Total Impact Damage Risk
PDC17 5/15/2017, 1% Impact Probability

![Graph showing probability distribution over affected population size.](image)
Damage Exceedance Risk

- Probability of an impact causing at least a given damage level or greater.
- Complementary cumulative distribution function (CCDF)

![Damage Exceedance Probabilities](image1)

![Conditional Damage Exceedance Probabilities](image2)

![Damage Exceedance Probabilities](image3)

![Damage Exceedance Probabilities](image4)
INJECT 2 S20: NOV 30, 2018
Swath Trajectory Parameters
Asteroid Parameter Distributions (1k realizations)
Blast Damage Zones

The diagram shows a world map with different zones color-coded as follows:

- **1-2 psi**
- **2-4 psi**
- **4-10 psi**
- **10+ psi**

The map highlights specific areas with varying blast damage zones, indicating the extent of potential damage from an explosion.
Mean Affected Population
Damage Ranges (min/mean/max)
Damage Level Probabilities

Total Impact Damage Risk
PDC17 11/30/2018, 96% Impact Probability

Damage Exceedance Probabilities
PDC17 11/30/2018

Exceedance Probability

Affected Population Threshold
Swath Trajectory Parameters
Parameter Distributions

Diameter Distribution, Inject 3 (s08)

H-mag Distribution, Inject 3 (s08)

Albedo Distribution, Inject 3 (s08)

Density Distribution, Inject 3 (s08)

Impact Energy Distribution, Inject 3 (s08)
Blast Damage Zones

[Map showing blast damage zones with different pressure ranges indicated by color codes: 1-2 psi, 2-4 psi, 4-10 psi, 10+ psi.]

L. Wheeler, D. Mathias
Mean Affected Population
Damage Ranges (min/mean/max)
Damage Level Probabilities

Total Impact Damage Risk
PDC17 5/20/2020, 100% Impact Probability

Damage Exceedance Probabilities
PDC17 5/20/2020
Swath Trajectory Parameters

[Graphs showing velocity and entry angle distributions for Inject 3 (s10)]
Asteroid Parameter Distributions

- Diameter Distribution, Inject 3 (s10)
- Density Distribution, Inject 3 (s10)
- Impact Energy Distribution, Inject 3 (s10)
Blast Damage Zones

![Map showing blast damage zones with pressure ranges: 1-2 psi, 2-4 psi, 4-10 psi, 10+ psi]
Mean Affected Population

Sources: Esri, HERE, DeLorme, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, TomTom, © OpenStreetMap, GIS User Comm.
Tiles Courtesy of Esri ArcGIS Online
Map: World Street Map
Mean Affected Population

Mean Damage Along Swath
PDC17 5/20/2020

Mean Affected Population

5/11/17
L. Wheeler, D. Mathias
Damage Ranges (min/mean/max)
Damage Level Probabilities

Total Impact Damage Risk
PDC17 5/20/2020, 100% Impact Probability

Damage Exceedance Probabilities
PDC17 5/20/2020

Graphs showing probability distributions for affected population.
Swath Trajectory Parameters
Asteroid Parameter Distributions

Diameter Distribution, Inject 4 (s16w)

Density Distribution, Inject 4 (s16w)

Impact Energy Distribution, Inject 4 (s16w)
Blast Damage Zones

- 1-2 psi
- 2-4 psi
- 4-10 psi
- 10+ psi
Mean Affected Population
Damage Ranges (min/mean/max)

Damage Ranges Along Swath
PDC17 2/25/2024

![Graph showing damage ranges along a swath with axes labeled as affected population and mean burst longitude.](image)

5/11/17

L. Wheeler, D. Mathias
Damage Level Probabilities

Total Impact Damage Risk
PDC17 2/25/2024, 100% Impact Probability

Damage Exceedance Probabilities
PDC17 2/25/2024, 100% Impact Probability
INJECT 4 S16E: FEB 25, 2024
Asteroid Parameter Distributions

- Diameter Distribution, Inject 4 (s16e)
- Density Distribution, Inject 4 (s16e)
- Impact Energy Distribution, Inject 4 (s16e)
Blast Damage Zones

1-2 psi
2-4 psi
4-10 psi
10+ psi
Mean Affected Population
Damage Ranges (min/mean/max)

Damage Ranges Along Swath
PDC17 2/25/2024

Mean Burst Longitude

Affected Population

10^0 10^2 10^4 10^6 10^8
Damage Level Probabilities

Total Impact Damage Risk
PDC17 2/25/2024, 100% Impact Probability

Damage Exceedance Probabilities
PDC17 2/25/2024
Swath Trajectory Parameters
Asteroid Parameter Distributions

Diameter Distribution, Inject 4 (s16ld)

Density Distribution, Inject 4 (s16ld)

Impact Energy Distribution, Inject 4 (s16ld)
Blast Damage Zones

1-2 psi
2-4 psi
4-10 psi
10+ psi
Mean Affected Population
Damage Ranges (min/mean/max)
Damage Level Probabilities

Total Impact Damage Risk
PDC17 2/25/2024, 100% Impact Probability

Damage Exceedance Probabilities
PDC17 2/25/2024