Zero-Boil-Off Tank (ZBOT) Experiment – Ground-Based Validation of Self-Pressurization & Pressure Control Two-Phase CFD Model

Mohammad Kassemi,*1,2 Sonya Hylton,2 Olga Kartuzova2

2National Center for Space Exploration (NCSER)
1NASA Glenn Research Center & 2Case Western Reserve University
Cleveland, OH

* Mohammad Kassemi @nasa.gov

October 28, 2017
Cryogenic Fluid Management of propellant storage tanks is in the critical path of most envisioned NASA exploration mission including mission to Mars.

The Zero Boil Off Tank (ZBOT) experiment provides a small-scale simulant-fluid investigation of storage tank pressurization and pressure control in the Microgravity Science Glovebox (MSG) unit aboard the ISS. Its objectives are to:

- Elucidate the roles of the various interacting transport and phase change phenomena that impact tank pressurization and pressure control in microgravity to form a scientific foundation for storage tank engineering.
- Obtain microgravity data for tank stratification, pressurization, mixing, destratification, and pressure control time constants during storage.
- Develop a state-of-the-art CFD two-phase model for storage tank pressurization & pressure control.
- Validate and Verify the zonal- and CFD-based tank models using the microgravity data. Use the model and correlations to optimize and scale-up future storage tank design.
Notional Pathway to Mature Understanding Of CFM Fluid Physics and Validated Computational Models

- Natural Convection
- Forced Mixing
- Evaporation/Condensation
- Microg Superheats/Nucleate Boiling
- Droplet Breakup & Transport
- Droplet Phase Change
- Microgravity Two-Phase Flow & Heat Transfer Regimes/Transitions
- Interfacial Turbulence Effects
- Vapor-Side Turbulent Transport
- Non-Condensable Gas Transport
- Double Diffusive Barriers
- Marangoni Convection
- Interfacial Mass Transfer Kinetics
- Capillary Flow & Free Surface Dynamics
- Contact Angle Dynamics & Thin Film Evaporation
- Sloshing
- Phase Control/Positioning

1-g Data

µg-Fundamentals (Simulant Fluids)

µg-Subscale Experiments (Cryogens)

K-Site, MHTB

ZBOT, TPCE

RMM3, Other Notional ISS JEM Cryo Experiments

Multinode Models: GFSSP, Sinda/Fluint

CFD Models: Ansys/Fluent, Flow3D

SOA Models

Cryo Demonstrations
Experiment was installed by Astronaut Joe Acaba on September 19 & 20th in the MSG and powered up.

System thermal & fluid characterization started on September 24th

Actual Test runs began on Oct 1st

Currently the 70\% test runs are being conducted and near completion

Data and images are being downloaded continuously
ZBOT Hardware Components

Acrylic Test Tank Dome

Stainless Steel Test Tank Base, Nozzle & Screen LAD

ZBOT Test Tank inside the Vacuum Jacket

ZBOT Hardware Components in MSG

Data Acquisition and Control Unit (DACU)
Camera Package
SAMS Head
Illumination Package
Test Section
Fluids Reservoir (FR)
Thermal Control Unit (TCU)
Cold Plate Package (CPP)
Fluids Support Unit (FSU)
ZBOT Camera & Illumination Package for Image Capture & PIV

- **Camera Acceptance Cone**
- **Beam Dump**
- **Tank**
- **Diode Laser**
- **Light Sheet Tilted 12°; eliminate tilt for ZBOT-2**
- **Camera Package**
- **Illumination Package**
68 pressurization, jet mixing, and destratification tests will be performed first at 3 fill levels with and without Particle Imaging Velocimetry (PIV)

30 Tests will be repeated with particles injected & PIV performed as Tech Validation

Type of Test	**Method & Mode**
Pressurization	Heater Strip
Vacuum Jacket Heating	
Heater and Vacuum Jacket	
Mixing Only	Uniform Temperature
After Self-Pressurization	
Subcooled Mixing	Uniform Temperature
After Self-Pressurization	

Input Variables (Tolerances)
- Heater Power (w/ in 5 mW RMS)
- Vacuum Jacket Offset (+/- 0.2°C)
- Fill Level (70% +/- 3%, 80% +/- 3%, 90% -3%)
- Jet Temperature (+/- 0.25°C)
- Jet Velocity/Flow rate (10% of reading)

Outputs as Time Evolution
- Pressure
- Fluid Temperature (6 locations)
- Wall Temperature (17 locations)
- Jacket Temperature (21 locations)
- Jet Penetration Depth
- DPIV Velocity/Flow Structures

ZBOT Tank Pressurization & Mixing Cooling Test Matrix

Perfluoro-n-Pentane
(PnP, or C5F12) n-isomer (Straight Chained) Chemical Structure

- Refrigerant/Cleaning fluid
- High purity (99.7% straight-chained n-isomer)
- Boiling Point = 29°C @ 1 atm
- Vapor Pressure = 12.5 psia @ 25°C

Benefits
- Boils Near Room Temperature
- Near zero contact angle with test tank
- Tox 0 – Approved by JSC toxicology and MSFC ECLSS groups as safe for use within International Space Station
Ground Based Model Validation Experiment in Flight Hardware:
1G Self-Pressurization - Vacuum Jacket Heating

VJ Heating (3.75 W/m²), 70%, Self-Pressurization: \{ Ra_L \rightarrow (10)^{11}, Ra_V \rightarrow (10)^8 \}
Ground Based Model Validation Experiment in Flight Hardware: 1G Self-Pressurization – Strip Band Heating

Strip Band Heating (1W), 90%, Self-Pressurization: \{ Ra_L \rightarrow (10)^{11}, Ra_v \rightarrow (10)^8 \}

Time = 12600s
Validation Against ZBOT-Flight 1G Pressurization – Energy Flow & Distributions During SB Heating & VJ Heating

SB Heating Self-Pressurization

\[Q_{WL} = Q_{IL} - Q_{IV} \]

VJ Heating Self-Pressurization

\[m\dot{L} = Q_{IL} - Q_{IV} \]

Evaporation

\[Q_{IL} > Q_{IV} \]
\[m > 0 \]

\[Q_{IL} < Q_{IV} \]
\[m > 0 \]
3D VOF Model Simulation of Jet Mixing & Ullage Penetration in Microgravity
Vacuum Jacket Self-Pressurization in Microgravity - Followed by Subcooled Jet Mixing

Vacuum Jacket Self-Pressurization

- FL = 70%
- $T_{VJ} = T_0 + 1 \text{ K}$

Subcooled Jet Mixing

- FL = 70%
- $T_{jet} = T_0 - 1 \text{ K}$
- $V_{jet} = 10 \text{ cm/s}$

Graphs showing time (hours) vs. temperature and pressure changes during the processes.
Microgravity Strip Band Heating (0.5 W) Self-Pressurization In Microgravity - Followed by Isothermal Jet Mixing

Case ZBOT-208-Self-Press-0.5W:

Case ZBOT-204-35s-PressControl-afterSelf-Press-0.5W-15cm/s

- FL = 70%
- Q = 0.5 W
- $T_{VJ} = T_T$
- $V_{jet} = 15$ cm/s
- $T_{jet} = T_{outlet}$

Graph:
- P-Ps (Pa)
- Time (hours)
- $T_{Heater} \& T_{Sat}$

5.15 K
Microgravity Isothermal Jet Mixing (Without Cooling)

FL = 70%
$T_0 = 38 \, \text{C}$
$T_{VJ} = T_T$
$V_{jet} = 6, 15 \, \text{cm/s}$
$T_{jet} = T_{outlet}$
Microgravity Subcooled Jet Mixing at Jet V = 15 cm/sec

- Tank Pressure
 - FL = 70%
 - $T_0 = 38\,\text{C}$
 - $T_{VJ} = T_T$
 - $V_{\text{jet}} = 15\,\text{cm/s}$

- LAD & Sat Temperatures

![Diagram showing tank pressure and temperature changes over time](image-url)
Microgravity Subcooled Jet Mixing at Jet $V = 6$ cm/sec

Tank Pressure

LAD & Sat Temperatures

$T_{LAD} - T_{Sat}$

$FL = 70\%$

$T_0 = 38$ C

$T_{VJ} = T_T$

$V_{jet} = 6$ cm/s
Backup Charts
Develop a computational platform to study and simulate the engineering performance of propellant storage tanks in 1g and microgravity with physical and numerical fidelity:

- **Multiphase CFD Models**: Capture the intricate two phase transport and interfacial phenomena that control tank pressurization, pressure control, filling and cryogen transfer in 1g, partial g and microgravity with physical accuracy.
- **Multinode Models**: Be able to predict tank engineering performance with numerical efficiency.
- **Coupled CFD-Multinode simulations necessary to predict tank performance during long duration (up to 1 year) missions.**
- **Increase capabilities of both CFD and multi-node analysis tools to perform predictive simulations of different Cryogenic Fluid Management (CFM) operations under settled and unsettled conditions for future missions:**
 - Self-Pressurization
 - Pressure control (axial jet, spray bar TVS, Broad Area Cooling)
 - Pressurization (helium and autogenous, different submergence)
 - Transfer line chilldown (pulse, continuous)
 - Tank chilldown (charge-hold-vent)
 - Tank filling and draining
 - ISRU liquifaction
Validation Against ZBOT 1G Pressurization & Pressure Control Simulant Fluid (PnP) – Small Scale

1W Strip Heater, Jet Mixing Pressure Control, Vjet = 25 cm/sec, Tjet = 294 – Tliquid ~ 296

3D with air t = 10,000 s
3D with air t = 11,500 s

Pressure

Temperature

\[Q_{IL} < Q_{IV} \]
\[\dot{m} < 0 \]

Condensation

\[\dot{m}_L = Q_{IL} - Q_{IV} \]

\[Q_{IV} < Q_{IL} \]
\[\dot{m} < 0 \]

Condensation

\[\dot{m}_L = Q_{IL} - Q_{IV} \]
Two-Phase Sharp Interface Storage Tank CFD Model

<table>
<thead>
<tr>
<th>Equation</th>
<th>Liquid</th>
<th>Ullage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Navier Stokes</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Energy</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Species</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Turbulence (k-ω)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Continuity:
\[
\frac{\partial \rho}{\partial t} + \nabla (\rho \vec{v}) = 0
\]

Momentum:
\[
\frac{\partial (\rho \vec{v})}{\partial t} + \nabla (\rho \vec{v} \cdot \vec{v}) = -\nabla p + \nabla \left[\mu_{\text{eff}} \left(\nabla \vec{v} + \nabla \vec{v}^T \right) \right] + \rho \vec{g} + \vec{F}_{\text{vol}}
\]

Energy:
\[
\frac{\partial (\rho E)}{\partial t} + \nabla (\rho E + p) = \nabla (k_{\text{eff}} \nabla T) + S_h
\]

Species:
\[
\frac{\partial (\rho \omega)}{\partial t} + \nabla (\vec{v} \rho \omega) = \nabla \cdot (\rho D_m \nabla \omega)
\]

Interfacial Energy Balance:
\[
T_I = T_{\text{sat}}(P_v)
\]
\[
LJ_v = -k_i \nabla T_I \cdot \hat{n} + k \cdot \nabla T \cdot \hat{n}
\]

Schrage Interfacial Mass Transfer:
\[
J_v = \frac{2\sigma}{2 - \sigma} \frac{1}{\sqrt{2\pi RT_I}} \left[P_{\text{sat}}(T_I) - P_v \right]
\]

Stefan Wind:
\[
J_v = -\left(\frac{\rho D_m}{1 - \omega_v} \right) \nabla \omega \cdot \hat{n}
\]

\[
P_v = \frac{\omega_v M_g}{\omega_v M_g + (1 - \omega_v)M_v} P
\]
Energy and Temperature as mass average scalars:

\[E = \frac{\sum_{q=1}^{2} \alpha_i \rho_q E_q}{\sum_{q=1}^{2} \alpha_i \rho_q} \]

Properties:

\[\rho = \sum_{q=1}^{2} \alpha_i \rho_q, \quad \mu_{eff} = \sum_{q=1}^{2} \alpha_i \mu_{eff_q}, \quad k_{eff} = \sum_{q=1}^{2} \alpha_i k_{eff_q} \]

Continuity of Volume Fraction of the \(q\)-th phase:

\[\frac{1}{\rho_q} \left[\frac{\partial}{\partial t} (\alpha_i \rho_q) + \nabla \cdot (\alpha_i \rho_q \mathbf{v}_q) \right] = S_{\alpha_q} \]

Continuum Surface Force (Brackbill et al.):

\[F_{vol} = \sum_{\text{pairs } ij, i<j} \alpha_i \rho_i h_j \nabla \alpha_j + \alpha_j \rho_j h_i \nabla \alpha_i \]

where \(h_i = \nabla \cdot \mathbf{\hat{n}} \)

Interfacial mass transfer per unit volume:

\[S_{\alpha_q} = \mathbf{\dot{m}}_i \cdot \mathbf{A}_i \left[\frac{\text{kg}}{m^3 \cdot \text{sec}} \right] \]

\[\mathbf{A}_i = |\nabla \alpha_i| \]

\(\mathbf{\dot{m}}_i \) is a mass flux vector in kg/(m²·sec)

Schrage Interfacial Mass Transfer:

\[\mathbf{\dot{m}}_i = I_v = \frac{2\sigma}{2 - \sigma} \frac{1}{\sqrt{2\pi RT_i}} [P_{sat}(T_i) - P_v] \]
K-Site & MHTB 1G LH2 Self-Pressurization: CFD Results vs Experiment – Tank Pressure, Temperature and Flow Field
ZBOT Experiment: Flight Test Tank & Fluid Support Hardware

ZBOT Hardware in Microgravity Science Glovebox Mockup at NASA MFSC

ZBOT Fluid Support Unit (FSU) & Reservoir Schematic
Validation Against ZBOT 1G Pressurization & Pressure Control Simulant Fluid (PnP) – Small Scale - Strip Heater

Jet Mixing Pressure Control - 20 Torr Residual Air – 2 deg Subcooled Jet
Microgravity Strip Band Heating (0.1 W) Self-Pressurization In Microgravity