Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

Nhan T. Nguyen
Technical Group Lead
Advanced Control and Evolvable Systems Group
Intelligent Systems Division
NASA Ames Research Center
Moffett Field, California

AIAA SciTech Forum 2018
January 10, 2018
Kissimmee, FL
Outline

● Adaptive Control Role in Complex Autonomous Systems
● Technical Challenges
● Certification Gaps
● Recommendations
● Concluding Remarks
Flight Control Technology

- Flight critical technology for enabling safe and efficient operation of aerospace systems – Fundamental system requirement

- Advanced flight control plays an important role in modern aircraft
 - Gust load alleviation control "Smoother Ride" technology in Boeing 787 Dreamliner
Traditional Role of Modeling and Simulations

- Modeling is an important part of risk reduction in control design in aerospace

- Reduced uncertainty \implies increased confidence in control design

- Increased fidelity

- Increased development cycle

- Increased cost

- Reduced uncertainty \implies increased confidence in control design
Traditional View of System Uncertainty in Control

- **Stability is a fundamental property of control systems**
- **System uncertainty can degrade stability property**
 - Cannot be eliminated but can be managed
- **Risk management of uncertainty**
 - Modeling
 - Built-in margins
 - Operational restriction
Emerging Air Vehicle Platforms

- UAS and Urban Air Mobility (UAM) platforms are poised for rapid growth opportunities in the aerospace market

![World Civil UAS Production Forecast](image)

UAS Magazine, September 29, 2016

- Increasingly, these platforms play more critical roles in all sectors of the society
Increased Complex Autonomous Capabilities

- **Operation beyond line of sight and in high-density airspace calls for increased complex autonomous capabilities**

- **Many manufacturers develop proprietary avionics without following traditional aerospace practice of risk reduction through system modeling and V&V**

- **UAS sometimes mistakenly perceived as non-safety critical assets – certification not high on priority list**

- **This view is proven false – increasingly UAS are view as safety-critical systems which must demonstrate to be highly reliable and safe**

- **Gaps in aerospace practice exists in UAS manufacturers – systems complexities not well-understood through first-principle modeling (e.g., complex vehicle dynamics with novel fixed-wing / rotary wing design) – increased risks and difficult to certify**
Why Adaptive Control?

- Future aerospace systems tend towards increased complex design and autonomy which can impose greater demand on reliability and safety through risk management

- Adaptive control can revolutionize traditional control technology to better manage *significant uncertainty* in increasingly complex autonomous systems

Systems that are adaptive and nondeterministic demonstrate the performance enhancements ... Many advanced IA systems are expected to be adaptive and/or nondeterministic ...

Adaptability is a fundamental requirement of autonomous systems that enable a wide range of capabilities

NRC Autonomy Research for Civil Aviation – Toward a New Era of Flight, 2014

AIAA Roadmap for Intelligent Systems in Aerospace, 2016
What is an Adaptive System?

Adaptation - the ability to adjust to changing environment through *learning* and adopting new behaviors to cope with changes

- **Essential elements of an adaptive system**
 - Reference model
 - Learning mechanism – adaptive law or machine learning

- **Mimics biological concept of learning that enables systems to adapt to changing environment optimally over time** – machine learning

- **Adaptive law provides a learning mechanism to internally adjust system parameters so as**
 - To suppress undesired response to uncertainty
 - To seek optimal behaviors over long time horizon
Adaptive Flight Control

Nonlinear methods
- Powerful and can handle variety of sources of uncertainty
- Adaptation leads to increased complex behaviors
- Fundamentally more difficult to V&V
Basic Elements of Adaptive Control

- **Adaptive law**
 \[
 \epsilon = B \left[\Theta^T \Phi(x) - y(x) \right]
 \]
 - model of uncertainty
 - uncertainty

- **Inputs can range from simple functions to complex neural networks**
 - Intelligent flight control (IFC)

 Single Hidden Layer Neural Network

- **Inputs can range from simple functions to complex neural networks**
 - Intelligent flight control (IFC)
Adaptive Control Challenges

- Adaptive systems use machine learning algorithms to provide enhanced performance of complex systems under a wide variety of operating conditions.

- Learning algorithms can also cause problems:
 - Incorrect learning is worse than no learning at all
 - Trust issue

- Learning process may converge to some local optimum rather than the true global optimum or may not converge at all.

- Currently, no analytical or formal method exists for verification of parameter convergence to the correct solution within a given time.

- Stability of adaptive systems remains a difficult problem.
Non-Determinism

- Non-determinism denotes the ability to predict the action of an adaptive system based on some initial inputs – e.g., neural network initialization with random weights.

- In theory, adaptive control systems can be designed to be deterministic – e.g., avoid use of neural network and initialization with pre-determined weights.

- In practice, “stochastic processes such as atmospheric turbulence, process noise, and reasoning processes such as due to diagnostics/prognostics can also be sources of non-determinism” (AIAA Roadmap for Intelligent Systems in Aerospace, 2016).
Robustness is the ability to tolerate physical effects not included in design (disturbances, unmodeled dynamics, pilot interaction, etc).

Fundamental stability requirement can be degraded by lack of robustness
- Crash of NASA X-15

Adaptive control is inherently non-robust
- Parameters can grow unbounded
The ideal asymptotic tracking property of adaptive control is highly desirable for performance, but at the same time creates robustness issue with parameter drift in the presence of exogenous disturbances.
Interaction with System Dynamics

- Unmodeled / uncertain dynamics destroys ideal property of adaptive control in model following, thereby potentially leading to instability

- Systems can diverge in myriad ways in the presence of unmodeled dynamics

Instability Due to Command at Zero Phase-Margin Frequency
Human Interactions

- Human interactions with adaptive systems can cause unpredictable and undesirable behaviors due to response latency and lack of situational awareness
 - Predator B mishaps during landing (Human Factors of UAVs: “Manning the Unmanned”)
 - Pilot-induced oscillations during NASA IFCS program in mid 2000’s

- Adaptive control technology cannot be fully matured without consideration of closed-loop dynamics of the human
 - Effects of interaction on system behaviors can be unpredictable
 - Closed-loop human interactions can reveal important features that need to be factored into design
Bounding Mechanisms

- Adaptive parameter bounding mechanisms
 - Robust modification to provide damping mechanisms
 - Projection method to enforce explicit a priori known bounds on adaptive parameters

- Increased robustness, but command following degrades - fundamental design trade-off

- Stability can still be an issue if system dynamics change substantially in off-nominal operation
Certification Gaps

- In spite of potential benefits of adaptive control, no adaptive flight control software has been certified for use in commercial airspace

- Software approval process defined by FAA requires flight critical software to meet RTCA DO-178C guidelines or other methods accepted by FAA
 - Does not address adaptive flight control which is fundamentally different from traditional gain-scheduled control

- Certification gaps
 - Gap 1 - Lack of adaptive control design requirements
 - Gap 2 - Difficulty in proving adaptive control stability
 - Gap 3 - High-fidelity benchmark simulations
 - Gap 4 - On-line assurance monitoring tools
 - Gap 5 - Development of certification plan for adaptive control

Gap 1 - Adaptive Control Requirements

Linear Flight Control Specifications
- Stability (gain/phase margins)
- Performance (overshoot/settling time)
- Handling qualities (Cooper-Harper, PIO)
- etc...

Adaptive Flight Control Specifications
Non-Existent!!!

Verifiable metrics for specification of adaptive control design requirements must be developed in order to enable the introduction of this technology into future flight systems
Development of Metrics

● Metrics are set of criteria which can be used for establish trust certificates

● NASA developed some initial metric definitions for adaptive control in 2009
 ► Stability margin
 ► Transient performance
 ► Steady-state error
 ► Control limiting

● Metrics need to be validated by simulations and flight tests

● Metrics must be well-accepted by community of practitioners and theoretically rigorous but yet easy to implement by engineers

● “Develop performance criteria, such as stability, robustness, and resilience, for the analysis and synthesis of adaptive/nondeterministic behaviors” (Autonomy Research for Civil Aviation – Toward a New Era of Flight, 2014)
Gap 2 - Stability Analysis

- Stability of adaptive systems under wide ranging situations is difficult to assess

- Factors that can affect stability
 - Inputs to adaptive law
 - Pilot commands
 - Initial conditions of vehicle states
 - Parameter convergence
 - Human interactions

- Standard Lyapunov theory cannot predict how close a system is away from instability – notion of stability margin is missing
Development of Analytical Tools

- **Analytical tools for stability analysis is not well matured**
 - Divergent interest between academia and flight control practitioners

- **Some analytical predictions based on Lyapunov theory can be too conservative, hence not practical**

- **Some techniques for adaptive systems**
 - Gap metric
 - Bounded linear stability analysis

- **Fundamentally difficult to apply in practical control setting**

- **This is viewed perhaps as one of the biggest barriers in adaptive systems**

Need to develop practical analytical tools for adaptive control that can gain wide acceptance by community
DO-178C allows certification credit for high-fidelity simulations as well as flight validation

There is no standardization of benchmark simulations
- Difficult to assess relative merits of different adaptive control technologies
- Difficult for certification authorities to assess which simulations are adequate references or benchmarks
Gap 4 – On-Line Assurance Monitoring Tools

- Simulations may discover problems, but they can never prove the absence of all problems.

- State space explosion can result in order to cover all possible scenarios in Monte Carlo simulations to find hidden faults.

- On-line monitoring tools can provide prognostics of potential problems, but the challenges are to know what to monitor and how to make meaningful inference.

What Requirements Form a Complete Set?

- **Flight Environment**
 - Turbulence / wind gust
 - Buffet
 - Air data

- **Vehicle**
 - Unmodeled / uncertain dynamics
 - Actuator / sensor dynamics
 - Changes in vehicle dynamics
 - Structural load limits
 - Pilot coupling

- **Control architecture**
 - Redundancy management – ensure that adaptation does no harm
 - Adaptation to off-nominal flight events
 - Adaptation to bad data such as sensor noise, electrical glitches
 - Control authority degradation
 - Communication / computational latency

Requirements are required to be correct and complete in DO-178C which can be difficult for adaptive systems
How to Validate?

- **Rely on proven methods and simplify design**
 - Leverage existing certification tools and methods for certifiable systems to maximum extent possible
 - Simplify adaptive system design with as few adaptive parameters as possible and reduce or eliminate sources of non-determinism

- **Use established V&V methods**
 - Safety case (review assumptions)
 - Formal / analytic methods

- **Establish metrics for certification**
 - Stability
 - Performance
 - Robustness / sensitivity

- **Establish interdisciplinary control-theoretic, system modeling, and software V&V approaches**
Recommendations

- **NRC Autonomy Research for Civil Aviation – Toward a New Era of Flight**
 - Develop Methodologies to Characterize and Bound the Behavior of Adaptive/Nondeterministic Systems over Their Complete Life Cycle
 - Develop mathematical models for describing adaptive/nondeterministic processes as applied to humans and machines
 - Develop performance criteria, such as stability, robustness, and resilience, for the analysis and synthesis of adaptive/nondeterministic behaviors
 - Develop methodologies beyond input-output testing for characterizing the behavior of IA systems
 - Determine the roles that humans play in limiting the behavior of adaptive/nondeterministic systems and how IA systems can take over those roles

- **AIAA Roadmap for Intelligent Systems in Aerospace**
 - Research investment areas
 - Multidisciplinary Modeling & Simulation Technologies
 - Vehicle Performance-Driven Adaptive Systems
 - Resilient Multidisciplinary Control System Technologies
 - Safety Monitoring, Assessment, & Management
 - Validation Technologies for Complex Integrated Deterministic and Stochastic Systems
Concluding Remarks

- Adaptive control is a promising revolutionary technology with cross-cutting applications in many different facets of aerospace industry including UAS and UAM
- Adaptive systems are widely recognized as critical capabilities for complex autonomous systems
- In spite of potential benefits, implementation challenges exist
- V&V challenges are numerous due to the complex learning algorithms for adaptive systems
- Recognizing adaptive systems as a R&D priority is important in development of certification process for future applications of adaptive control in safety-critical systems