NASA’s Bio-Inspired Acoustic Absorber Concept

L. Danielle Koch, P.E.
Aerospace Engineer

NASA Glenn Research Center, Acoustics Branch
L.Danielle.Koch@nasa.gov
216-433-5656

Summit 2017: Nature-Inspired Exploration for Aerospace
Ohio Aerospace Institute
Cleveland, Ohio
October 5, 2017
NASA’s Bio-Inspired Acoustic Absorber Concept

Overview

NASA is learning from nature to develop new technology to reduce noise pollution.

- Inspiration
- Concept overview
- Description of the experiments
- Description of the prototypes
- The path forward: research and outreach
- Summary
- Acknowledgements
- Contact information
- References
NASA’s Bio-Inspired Acoustic Absorber Concept

Have you heard the sounds of nature?

Kalmiopsis Wilderness, Siskiyou National Forest, Oregon
Inspiration

Map of the Quietest Places in the United States—Natural Conditions
Source: National Park Service1,2

This model estimates the distribution of natural sounds in the U.S., \textit{excluding} the noise of machines.
This model estimates the distribution of natural sounds in the U.S., including the noise of machines. Transportation is a dominant source of noise pollution.
Since the 1960’s, the number of commercial aircraft has tripled, as did other vehicles. Aircraft are a significant source of transportation noise.
NASA’s Bio-Inspired Acoustic Absorber Concept

National Transportation Noise Map: Road and Aviation Noise Near Cleveland, Ohio

Aircraft noise is concentrated near airports, but is audible to most of the US population.

<table>
<thead>
<tr>
<th>A-weighted 24-hour LAEQ (dBA)</th>
<th>Common comparable sounds</th>
<th>Aviation</th>
<th>Road (Interstate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50</td>
<td>Refrigerator humming (~40 dBA)</td>
<td>97.12</td>
<td>98</td>
</tr>
<tr>
<td>50 to 59</td>
<td>Quiet office (~50 dBA)</td>
<td>2.65</td>
<td>1.3</td>
</tr>
<tr>
<td>60 to 69</td>
<td>Conversational speech (~60 dBA)</td>
<td>0.21</td>
<td>0.44</td>
</tr>
<tr>
<td>70 to 79</td>
<td>Vacuum cleaner (~70 dBA)</td>
<td>0.01</td>
<td>0.25</td>
</tr>
<tr>
<td>80 or more</td>
<td>Garbage disposal (~80 dBA)</td>
<td>< 0.01</td>
<td>0.06</td>
</tr>
</tbody>
</table>
The National Park Service is working with the Federal Aviation Administration to establish Air Tour Management Plans or voluntary agreements with air tour providers that protect the natural soundscapes in popular national parks.5
The International Civil Aviation Organization and the Federal Aviation Administration establish aircraft noise regulations. Commercial aircraft must fly a prescribed trajectory over a set of microphones to measure takeoff and landing noise. In order to be certified to operate, noise measurements must be below current regulations.6,7
Aircraft noise limits have decreased over time, which has driven innovation. Individual aircraft are significantly quieter than they were in the 1960’s.\(^8\)
NASA is developing technology for quiet and efficient aircraft of the future.9
I became curious about nature while conducting an experiment to validate a fan inlet distortion tone noise prediction code I had developed for aircraft engine noise reduction research.
Inspiration

Owls are often the inspiration and subject of research for engineers interested in quiet flight.

Inspired by research I had heard at a number of conferences sponsored by the American Institute of Aeronautics and Astronautics (AIAA) and the Institute of Noise Control Engineering (INCE), I began to read about owls and the impact of transportation noise on the national parks.
Today’s presentation is not about owls.
Nature is inspiring! Researchers in the School of Architecture at the University of Liverpool, UK published an intriguing observation: 2 inch deep bundles of natural reeds were effective at absorbing sound in the 400-1000 Hz range.
In general, it has been difficult to absorb sounds below 1000 Hz with commercially available materials that are thin and lightweight, particularly in applications with harsh environmental conditions.

Inspired by natural reeds, we have designed, fabricated, and tested prototypes of broadband acoustic absorbers that are capable of providing good absorption performance between 0 and 3,000 Hz, and particularly below 1,000 Hz.

Prototypes were additively manufactured using the NASA Glenn Stratasys Fortus 400 Fused Deposition Modeler.

Exploratory proof-of-concept tests were performed in the NASA Glenn and NASA Langley Normal Incidence Tubes.
Today for example, melamine foam is a widely used acoustic absorber in industry. Double Degree of Freedom Perforate-Over-Honeycomb (DDOF-POHC) structures are commonly used as aircraft engine acoustic liners.
To measure how much sound was absorbed, the samples were tested in the horizontal NASA Glenn and NASA Langley Normal Incidence Tubes.
Normal Incidence Tube measurements show the acoustic absorption coefficients for this 2 inch deep sample of melamine are lowest in the 400-1000 Hz range.
The acoustic absorption coefficients for this Double Degree of Freedom Perforate over honeycomb liner are also lowest between 400-1000 Hz.
Natural reeds are often not suited for industrial use. Could we manufacture structures that resemble bundles of natural reeds from other materials and still get high acoustic absorption at low frequencies?
Yes! We did manufacture structures that resemble 2 inch deep bundles of natural reeds from a synthetic material that effectively absorbed sounds in the 0-3000 Hz frequency range, and especially below 1000 Hz.
We believe these promising initial results warrant further investigation. There may be a number of aviation and industrial applications with challenging sets of constraints that could use broadband acoustic absorbers.
Four samples of natural reeds, *Phragmites australis*, were packed inside acrylic sample holders. Sound entered the sample through Nomex honeycomb. The acrylic back plate was held in place with glass reinforced nylon screws. The acrylic sample holder was chosen to be compatible with this acoustic rig and the X-ray CT scanner.
One sample consisted of loose synthetic reeds packed in an acrylic sample holder. The synthetic reeds were designed using X-ray Computed Tomography images of some natural reeds. The synthetic reeds were additively manufactured from ASA thermoplastic on the NASA Glenn Stratasys Fortus 400 Fused Deposition Modeler.
Sound enters the sample through the Nomex honeycomb, and passes through the spaces formed between the synthetic reeds.
Several other prototypes were built that did not need a sample holder to hold its shape. These were also designed using X-ray Computed Tomography images and Fused Deposition Modeling.
Description of the prototypes

ASA-2.0: Loose but packed

- Loose tubes are packed together.
- Needs retainer to hold shape.
- Fully 3D--Cross-section shape and size varies along length of each.

ASA-2.1: Fixed with baseplate

- Tubes are held in place with a base.
- Does not need retainer to hold shape.
- 2D: Cross-section shape, size, and position of each tube varies in the x-y plane only; lengthwise uniform.

NASA’s Bio-Inspired Acoustic Absorber Concept
The fixed sample is useful since it is one geometry that we could consider for more controlled tests as we try to develop physics-based models to predict acoustics.
This observation might have some practical use in controlling low frequency noise in aviation and industrial applications where there may be constraints on treatment thickness, weight, temperature, and exposure to liquids.
NASA’s Bio-Inspired Acoustic Absorber Concept

The path forward: research and outreach

A variety of rigs are available to us for future aviation-related proof-of-concept tests:

- NASA GRC and LaRC Normal Incidence Tube
- NASA LaRC Grazing Flow Incidence Tube
- NASA LaRC Curved Duct Rig
- NASA/Notre Dame Advanced Noise Control Fan
- NASA GRC DGEN-380 Aeropropulsion Research Turbofan Engine
- NASA GRC 9 x 15 Low Speed Wind Tunnel Tests
- Other Ground Tests
- Other Flight Tests

DGEN-380 engine in the NASA Glenn AeroAcoustic Propulsion Lab
This patent-pending technology might be of wide practical use, for example:

Aviation
Automotive
Architectural
Space exploration
Other?

These structures can control noise over a broad frequency range, particularly below 1000 Hz, in applications that have tight constraints on weight and thickness, and may be exposed to high temperatures or liquids.
The current work has been exploratory, and a wide range of research questions are now being asked and answered at NASA:

How might we predict the acoustic absorption of these structures? Which variables are important: porosity, tortuosity, mass, stiffness…?
How might we manufacture prototypes to test our hypotheses?
How might we adapt the prototypes to an installation?
How might we improve the prototypes?
How might we continue to learn from nature?
How might we use these observations for the benefit of all?

Your feedback is important to us!
NASA’s Bio-Inspired Acoustic Absorber Concept

The path forward: research and outreach

We interact with students in a variety of ways:

- tutoring
- career shadowing
- STEM competitions
- internships
- capstone projects
- school presentations
- distance learning broadcasts
- content for media requests

Interview at the NASA Glenn AeroAcoustic Propulsion Laboratory for an educational video.
Summary

Four samples of natural reeds, *Phragmites australis*, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz.

Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested.

Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds.

This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz.

Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.
NASA’s Bio-Inspired Acoustic Absorber Concept

Acknowledgements

NASA Glenn Research Center

Chris Miller, Acoustics Branch
Pete Bonacuse, High Temperatures and Smart Alloys Branch
Chris Johnston, Multiscale and Multiphysics Modeling Branch
Maria Kuczmarski, Multiscale and Multiphysics Modeling Branch
Karen Bartos, Technology Transfer Office
Amy Hiltabidel, Technology Transfer Office

NASA Langley Research Center

Mike Jones, Structural Acoustics Branch

Funding provided by
NASA’s Aircraft Noise Reduction
Advanced Air Transport Technology (AATT) Project
Hamilton Fernandez, Sub-Project Manager
To explore licensing and partnerships with NASA Glenn for this or any of our other technologies, visit the NASA Glenn Tech Transfer website at:

http://technology.grc.nasa.gov

Point of contact
Karen Bartos, IP Portfolio Manager/Technology Manager
216-433-6478
kbartos@nasa.gov

Discover available NASA technologies

Website: http://technology.grc.nasa.gov

Twitter: @NASAGlennBiz
NASA’s Bio-Inspired Acoustic Absorber Concept

References