Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

Terminal Operations HITL 1
Primary Results
Presented to: RTCA SC-228 WG-1
Objective

• Purpose: Examine issues related to the operation of the Phase 1 DAA system within a Class D terminal area. The following operations were performed:
 – Instrument approach
 – Visual approach
 – Visual pattern

• Objectives:
 – Characterize pilot and Phase 1 DAA system performance while conducting terminal area operations
 – Investigate the effect of changes to the alerting and guidance structure intended to minimize frequency of alerts
 – Investigate the effect of the location of an encounter on pilot responses
Experimental Design

• One-Way Between Subjects Factorial
 – Independent Variable:
 • Level of DAA System Alerting & Guidance (Between-subjects)
 – D1 = No corrective or warning DAA alert; no DAA guidance
 – D2 = No corrective DAA alert; DAA warning guidance only
 – D3 = Full Phase 1 MOPS DAA alerting and guidance (Class I)
 – Embedded Variables:
 • Ownship approach type
 – Instrument
 – Visual
 – Traffic Pattern
 • Encounter location
 – Early (before final)
 – Late (on final)
Experimental Design

D1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preventive Alert</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
</tr>
</tbody>
</table>

No Guidance

D2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preventive Alert</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
</tr>
</tbody>
</table>

Warning Remain

DWC Guidance Only

D3

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning Alert</td>
</tr>
<tr>
<td></td>
<td>Corrective Alert</td>
</tr>
<tr>
<td></td>
<td>Preventive Alert</td>
</tr>
<tr>
<td></td>
<td>Guidance Traffic</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
</tr>
</tbody>
</table>

All Remain & Regain

DWC Guidance

Note: used instantaneous turn assumption to generate guidance
Phase 1 MOPSAlerting Criteria

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>DAA Well Clear Criteria</th>
<th>Time to Loss of DAA Well Clear</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
</table>
| | Warning Alert | • Notify ATC as soon as practicable after taking action | DMOD = 0.66 nmi
HMD = 0.66 nmi
ZTHR = 450 ft
modTau = 35 sec | 25 sec | “Traffic, Maneuver Now” x2 |
| | Corrective Alert | • Coordinate with ATC to determine an appropriate maneuver | DMOD = 0.66 nmi
HMD = 0.66 nmi
ZTHR = 450 ft
modTau = 35 sec | 55 sec | “Traffic, Avoid” |
| | Preventive Alert | • On current course, corrective action should not be required | DMOD = 0.66 nmi
HMD = 0.66 nmi
ZTHR = 700 ft
modTau = 35 sec | 55 sec | “Traffic, Monitor” |
| | Guidance Traffic | • Traffic generating guidance bands outside of current course | Associated w/ bands outside current course | X | N/A |
| | Remaining Traffic | • Traffic within sensor range | Within surveillance field of regard | X | N/A |

Note: used ‘unbuffered’ DWC criteria
Alerting & Guidance During *Preventive* Threat
-- No LoDWC Predicted --

D1

- Inner Range Ring
- Altitude Tape

D2

- Inner Range Ring
- Altitude Tape

D3

- Inner Range Ring
- Altitude Tape

notional encounter
Alerting & Guidance During *Corrective* Threat
-- LoDWC Predicted < 55 sec --

D1

- Inner Range Ring
- Altitude Tape

D2

- Inner Range Ring
- Altitude Tape

D3

- Inner Range Ring
- Altitude Tape

notional encounter
Alerting & Guidance During **Warning** Threat

-- LoDWC Predicted < 25 sec --

D1

- Inner Range Ring
- Altitude Tape

D2

- Inner Range Ring
- Altitude Tape

D3

- Inner Range Ring
- Altitude Tape

notional encounter
Aircraft Flight Model

• Generic MQ-9 Reaper
 – Speed:
 • Cruise: 110 knots
 • Landing: 90-110 knots
 • Max: 200 knots
 • Min: 70 knots
 – Default Climb Rate:
 • 1000ft/min
 – Default Descent Rate:
 • 1000ft/min
 – Roll:
 • Max: +/- 20°
 • Rate: 5°/sec
 – Pitch:
 • Max: +/- 10°
 • Rate: 1°/sec
Ground Control Station (GCS)

- Ground control station (GCS) contains:
 1. **DAA Display** – traffic & alerting
 2. **Tactical Situation Display (TSD)** – vehicle control interfaces & maps
 3. **Viewer Tool** – contains approach plate & airport facility directory (AFD)
 4. **Right Panel** – landing checklist and additional info
 5. **Voice communication panel** – touchscreen, transmit/receive on select freqs.
• Primary = Rwy14
• Runway 14/32
 – Length = 6000ft x 150ft
 – RNAV (GPS)
• Elevation = 129ft
• Traffic Pattern = 1150ft
• Downwind offsets:
 – Left = ~1.5nm
 – Right = ~0.5nm
• Runway 20/02
 – Not used

Traffic Pattern Altitude = 1150ft
3NM (WP1) to RW14 (WP2) = 3nm
RW14 (WP2) to RW32 (WP3) = 1nm
Simulation Components

• Pseudo-pilots monitored and managed all manned traffic (IFR & VFR)
 – Multi-Aircraft Control System (MACS) software suite
• Air Traffic Control managed UAS and manned traffic
 – Center controller managing Oakland Center (ZOA 40/41)
 – Tower controller managing Santa Rosa (KSTS)
 – Sector traffic modeled using real sector activity and data
• All participants communicated via push-to-talk headsets
 – Oakland Center frequency: 127.80
 – KSTS Tower frequency: 118.50
 – KSTS ATIS: 120.55
Pilots trained first on the ground control station followed by training on the DAA system

- Trained on the meaning of each alert/guidance type in their given configuration

Pilots were trained last on how to fly the approach

Informed that:

- Phase 1 DAA system was designed to assist pilots in maintaining DAA well clear during transit/en route operations in Class D, E, and G airspace
- A Phase 2 DAA system is being developed to support terminal operations and therefore:
 - Phase 1 DAA well clear definition and associated alerting/guidance may or may not be suitable in terminal environments

- Told to use the DAA system at their discretion to conduct safe operations in the terminal environment
Scenario Design

• Participants flew 3 different types of approaches into Santa Rosa Rwy 14 under Instrument Flight Rules (IFR)
 – Instrument (RNAV GPS) Approach
 – “Visual” Approach
 – Traffic Pattern

• Common across scenarios:
 – Start in Vigilant Spirit’s HOLDS mode & in Oakland center airspace
 – Coordinate transfer to KSTS Tower
 – Perform checklist actions as able (e.g., check ATIS, brief approach)
 – Fly final in Vigilant Spirit’s NAV mode (enables glide slope)
Scenario Design

Instrument Approaches
- Final approach coarse offset 15°
- Missed approach procedures = climb to 5000ft, fly runway heading (140°)

Visual Approaches
- "Visual" Approach Notes:
 - Airport “in sight” 10-12nm from runway
 - Line up for 3nm final stabilized approach
 - Traffic pattern @ 1150ft

Pattern Approaches
- Pattern Approach Notes:
 - Traffic pattern @ 1150ft
 - Controllers will give pattern entry instructions
 - 45° entry, mid-field entry or direct base
 - May extend downwind and call your base
 - Offset from Rwy14 should be ~1.5nm
• Each scenario had 6 runs:
 – 4 included a **scripted loss of DAA well clear** somewhere along approach:
 • 2 scripted to occur **Early** - before final; 5-10nm from airport
 • 2 scripted to occur **Late** - on final; within 3nm of airport
 – 2 included **no scripted conflict** but interactions with traffic around airport were expected
 • Alerts and LoDWC possible due to size of DWC definition and 0.5nm offset of right downwind from runway
Participants

- 18 participants ($M = 38.5$ years of age)
 - All had manned flying experience ($M = 2200$ hours) and were IFR rated
 - Manned: $M = 3000$ hrs in civilian airspace; Unmanned: $M = 1000$ hrs in civilian airspace
 - $\frac{1}{2}$ had experience with unmanned aircraft ($M = 1100$ hours)
- 3 Air Traffic Control confederates
 - 1 retired tower controllers (Stockton)
 - 2 retired center controllers (Oakland Center)
- 4 Pseudo pilot confederates (current general aviation)
RESULTS
Global Statistics

• 216 total scripted conflicts (all single-threat encounters)
 = 18 (pilots) * 3 (scenarios per pilot) * 4 (scripted conflicts per scenario)

• 536 intruders registered (in truth) as DAA preventive, corrective or warning
 – 40% were against scripted conflicts
 – 60% were against unscripted conflicts

• Breakdown of (truth) alert types generated by intruders:

<table>
<thead>
<tr>
<th># of Unique Intruders</th>
<th>DAA Preventive</th>
<th>DAA Corrective</th>
<th>DAA Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scripted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>147 (70%)</td>
<td>162 (77%)</td>
<td>191 (90%)</td>
</tr>
<tr>
<td>Unscripted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>160 (49%)</td>
<td>215 (66%)</td>
<td>149 (46%)</td>
</tr>
</tbody>
</table>

NOTE:
“Truth” alerts = actual alert level registered by DAA system, regardless of experimental condition
• Results centered on the effect of display configuration and location of encounter
 – Display configuration was primary IV
 – Encounter location resulted in most pronounced results
 • Early = before final
 • Late = on final
 • Unscripted = almost exclusively pattern traffic (similar in location to ‘late’ encounters)
• Effects of pilot background, approach type and trial were examined but not focus of this presentation
 – Metrics where they had noteworthy effect are pointed out
RESPONSE AND ALERT TIMES
Visible Alerts

Visible Alerts (＆Truth Alert) by Display Configuration

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th></th>
<th>D2</th>
<th></th>
<th>D3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visible</td>
<td>Truth</td>
<td>Visible</td>
<td>Truth</td>
<td>Visible</td>
<td>Truth</td>
</tr>
<tr>
<td>Preventive</td>
<td>178</td>
<td>97</td>
<td>165</td>
<td>107</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>Corrective</td>
<td>128</td>
<td></td>
<td>125</td>
<td></td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>(visible as</td>
<td></td>
<td></td>
<td>(visible as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preventive)</td>
<td></td>
<td></td>
<td>preventive)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td>119</td>
<td></td>
<td>117</td>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>(visible as</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preventive)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Alert levels were suppressed in D1 and D2
 - As a result pilots received greater number of DAA Preventive alerts and had to interpret if they were a legitimate threat
- Slightly fewer (~10%) DAA Warning (truth) alerts triggered in D3
Aircraft Response Time (AC RT)

- AC RT = time to upload maneuver following alert onset
- D1 condition resulted in slower responses to both corrective and warning alerts (~ 7-10sec)
 - All conditions slower than was observed in Part Task 6
- Slowest AC RT when responding to encounters on final in Instrument Approach scenario
- Slower in first trial of day

Avg. AC RT by Trial

Chart 1: Avg. AC Response Time by Alert Level (Truth) & Display Configuration

- Corrective
- Warning

Chart 2: Avg. AC RT by Scenario and Encounter Location

- Early
- Late
- Unscripted

Data:

<table>
<thead>
<tr>
<th>Alert Level (Truth)</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>PT6 Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction</td>
<td>38.36</td>
<td>25.24</td>
<td>27.99</td>
<td>27.99</td>
</tr>
<tr>
<td>Warning</td>
<td>31.79</td>
<td>17.71</td>
<td>18.37</td>
<td>18.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Instrument</th>
<th>Visual</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tr1</td>
<td>24.78</td>
<td>20</td>
<td>24.33</td>
</tr>
<tr>
<td>Tr2</td>
<td>25.45</td>
<td>28.75</td>
<td>26.42</td>
</tr>
<tr>
<td>Tr3</td>
<td>29.92</td>
<td>19.67</td>
<td></td>
</tr>
</tbody>
</table>
• 340 intruders registered as DAA Warning
 – 29% spent 0 time as DAA Corrective
 – 63% spent < 15 seconds as DAA Corrective
• Late and Unscripted encounters most likely to spend < 15 seconds as DAA Corrective before registering as DAA Warning
SEPARATION DATA
Proportion of Losses of DAA Well Clear

- Proportion of losses of DAA Well Clear (LoDWC)
 - \(\frac{\text{# of LoDWC}}{\text{# aircraft}} \) that generated a DAA Corrective or Warning
- **176** total LoDWC / **472** total DAA Corrective and/or Warning alerts = **37% overall**
 - Consistent across conditions (34-39%)
- Alerted traffic most likely to lead to LoDWC when occurring late
 - Much smaller number of unscripted alerts actually led to LoDWC (26/249)
Loss of DAA Well Clear Severity (SLoWC)

- SLoWC = % of the DAA well clear volume (including tau) penetrated by intruder
 - Higher % = greater penetration
- On average, D2 resulted in less severe LoDWC (reduction ~6-8%)
- Late encounters consistently resulted in more severe LoDWC
 - Especially pronounced in D1 condition

Avg. SLoWC by Display Configuration and Encounter Location

<table>
<thead>
<tr>
<th>Display Configuration</th>
<th>Early</th>
<th>Late</th>
<th>Unscripted</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>18.53</td>
<td>37.61</td>
<td>9.72</td>
<td>21.96</td>
</tr>
<tr>
<td>D2</td>
<td>15.86</td>
<td>26.46</td>
<td>6.04</td>
<td>16.12</td>
</tr>
<tr>
<td>D3</td>
<td>23.89</td>
<td>30.36</td>
<td>16.50</td>
<td>23.58</td>
</tr>
</tbody>
</table>

Better

Worse
• Median SLoWC generally low (< 20%) across display configurations
• Median rises to 30% for late encounters
 – Median < 15% for early and unscripted encounters

• All display configurations and both early and late encounters experienced multiple high-severity losses of DAA well clear (> 50%)
• D2 showed fewer high-severity LoDWC than D1 & D3
• Late encounters resulted in disproportionate # of high-severity LoDWC

<table>
<thead>
<tr>
<th>Loss of DAA Well Clear Severity (SLoWC) > 50%</th>
</tr>
</thead>
</table>

Note: 60% were pilot error; 40% ”too slow”

Note: 75% ”too slow” or “no maneuver”
60% of all LoDWC breached the horizontal & vertical Phase 1 DWC thresholds (discarding tau component)

- 13% breached CalAnalytics terminal area DWC

<table>
<thead>
<tr>
<th></th>
<th>Early</th>
<th>Late</th>
<th>Unscripted</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Spatial” LoDWC</td>
<td>52%</td>
<td>72%</td>
<td>40%</td>
<td>105</td>
</tr>
<tr>
<td>“Cal” LoDWC</td>
<td>10%</td>
<td>18%</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Total LoDWC</td>
<td>56%</td>
<td>89%</td>
<td>31%</td>
<td>176</td>
</tr>
</tbody>
</table>
Separation Results Summary

• Display configuration smaller effect on proportion and severity of LoDWC than encounter location
 – Late encounters disproportionately bad
 – Unscripted encounters low in number and severity
• All display configurations had instances of high severity SLoWC (> 50%)
 – Slight trend of less-severe LoDWC in D2
 – Most were due to pilot error (slow responses in particular)
• 105 cases of ‘spatial’ LoDWC and 22 cases using CalAnalytics criteria
 – Unscripted encounters never reached CalAnalytics volume
LoDWC BREAKDOWN
• Generally clustered around final with handful of losses during transition from Oakland center airspace to terminal area.
• Majority of intruders are on or near right downwind

Intruder Location at CPA (For All LoDWC)
Intruder & Own Lat/Long

Legend:
- Intruder Position
- Ownship Position

Legend:
- Intruder Position
- Ownship Position

3nm
Rwy14
Own Lat/Long
LoDWC by Encounter Type

- Encounters designed to turn directly into us while ownship was on final were most likely to result in LoDWC (97%)
- Encounters with a head-on KSTS departure while ownship was on final were most likely to result in “spatial” LoDWC (83%)

<table>
<thead>
<tr>
<th>Encounter Type</th>
<th>Encounter Location</th>
<th>% LoDWC</th>
<th>% "Spatial" LoDWC</th>
<th>Total Scripted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Into Ownship</td>
<td>Late</td>
<td>97%</td>
<td>63%</td>
<td>36</td>
</tr>
<tr>
<td>Departure</td>
<td>Late</td>
<td>88%</td>
<td>83%</td>
<td>18</td>
</tr>
<tr>
<td>Overflight</td>
<td>Late</td>
<td>72%</td>
<td>44%</td>
<td>18</td>
</tr>
<tr>
<td>Turn in Front</td>
<td>Late</td>
<td>69%</td>
<td>47%</td>
<td>36</td>
</tr>
<tr>
<td>Overflight</td>
<td>Early</td>
<td>61%</td>
<td>29%</td>
<td>54</td>
</tr>
<tr>
<td>Cut-Off (Base)</td>
<td>Early</td>
<td>55%</td>
<td>38%</td>
<td>18</td>
</tr>
<tr>
<td>Parallel Track</td>
<td>Early</td>
<td>50%</td>
<td>22%</td>
<td>18</td>
</tr>
<tr>
<td>Departure</td>
<td>Early</td>
<td>22%</td>
<td>11%</td>
<td>18</td>
</tr>
</tbody>
</table>
Late Encounter Examples

Turn Into Ownship

<table>
<thead>
<tr>
<th># of LoDWC</th>
<th># of "Spatial" LoDWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 (97%)</td>
<td>23 (63%)</td>
</tr>
</tbody>
</table>

Turn In Front

<table>
<thead>
<tr>
<th># of LoDWC</th>
<th># of "Spatial" LoDWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (69%)</td>
<td>17 (47%)</td>
</tr>
</tbody>
</table>
Late Encounter Examples

<table>
<thead>
<tr>
<th></th>
<th>KSTS Departure</th>
<th>Overflight (Late)</th>
</tr>
</thead>
<tbody>
<tr>
<td># of LoDWC</td>
<td>16 (88%)</td>
<td>13 (72%)</td>
</tr>
<tr>
<td># of "Spatial" LoDWC</td>
<td>15 (83%)</td>
<td>8 (44%)</td>
</tr>
</tbody>
</table>
Early Encounter Examples

<table>
<thead>
<tr>
<th># of LoDWC</th>
<th># of "Spatial" LoDWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 (61%)</td>
<td>16 (29%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of LoDWC</th>
<th># of "Spatial" LoDWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 (61%)</td>
<td>16 (29%)</td>
</tr>
</tbody>
</table>
Instances of LoDWC with unscripted encounters most often happened as intruder was on right downwind
- Intruders turning base or final was second most common cause

Ownership was typically established on final when these LoDWC occurred
- Minority occurred when ownership was turning base/final or approaching the 3nm fix

<table>
<thead>
<tr>
<th>Intruder Location</th>
<th># LoDWC</th>
<th>"Spatial" LoDWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downwind</td>
<td>13</td>
<td>6 (46%)</td>
</tr>
<tr>
<td>Turning (Base or Final)</td>
<td>10</td>
<td>3 (30%)</td>
</tr>
<tr>
<td>On Final</td>
<td>4</td>
<td>3 (75%)</td>
</tr>
<tr>
<td>On Base</td>
<td>2</td>
<td>1 (50%)</td>
</tr>
<tr>
<td>Approaching Final</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jet Traffic</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31</td>
<td>11</td>
</tr>
</tbody>
</table>
Pilot error accounted for 63% of LoDWC
- Most common cause of LoDWC was the pilot responding too slowly
• Late acceleration (< 15sec to LoDWC at first alert)
 2nd most common cause
• D1 resulted in greatest number of slow responses
 - D2 resulted in fewer slow responses against late encounters than D1 and D3

![Causes of LoDWC Table]

<table>
<thead>
<tr>
<th>LoDWC Category</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Too Slow</td>
<td>34%</td>
</tr>
<tr>
<td>Ineffective Maneuver</td>
<td>11%</td>
</tr>
<tr>
<td>Return Too Soon</td>
<td>9%</td>
</tr>
<tr>
<td>Turned Base/Final Too Soon</td>
<td>5%</td>
</tr>
<tr>
<td>No Maneuver</td>
<td>2%</td>
</tr>
<tr>
<td>Secondary Cause by Pilot</td>
<td>2%</td>
</tr>
<tr>
<td>Pilot Not Responsible</td>
<td></td>
</tr>
<tr>
<td>Late Acceleration</td>
<td>33%</td>
</tr>
<tr>
<td>Pattern Activity</td>
<td>5%</td>
</tr>
</tbody>
</table>

![Bar Chart: # of "Too Slow" LoDWC by Config. & Encounter Location]

- Display Configuration:
 - D1: 10 Early, 15 Late, 3 Unscripted, 28 Total
 - D2: 8 Early, 6 Late, 14 Unscripted, 25 Total
 - D3: 3 Early, 12 Late, 2 Unscripted, 17 Total

44
LoDWC Results Summary

• LoDWC occurred near final, and specifically alongside right downwind
 – Turns directly into ownship on final and a departure were most likely encounter types to progress to LoDWC
 – Right downwind traffic was the biggest cause of LoDWC against unscripted intruders
• 2/3 of LoDWC a result of slow pilot response or late acceleration (both more common with late encounters)
MANEUVERING & ATC INTEROPERABILITY
• Pilots resolved most maneuvers with heading changes
 – Late encounters resulted in more altitude and speed changes than early encounters
Maneuver Characteristics

• 2 flights into terrain occurred during data collection runs
 – Both occurred during “visual” approach scenario where pilots descended to pattern altitude early

• Tower raised concern with number of 360s & turns made near runway
 – Much more common among pilots with unmanned experience and flying visual approach
• Receiving ATC approval was rare, regardless of condition
 – Slightly more frequent when returning to course
 – Far less common than PT6

• **Initial Approval** = # of initial maneuvers with approval from ATC / # of total maneuvers made
• **Return Approval** = # of returns to course with approval from ATC / # of total returns to course
• After each encounter, tower controller answered the following questions:

1. In this encounter did the UAS pilot maintain adequate separation? (301 responses)
 - Yes: 298
 - No: 20
 - N/A: 3

2. Did the UAS pilot maneuver unnecessarily for the encounter? (206 responses)
 - Yes: 111
 - No: 206
 - N/A: 7

3. Were there issues with UAS pilot communication? (271 responses)
 - Yes: 47
 - No: 271
 - N/A: 6

• Tower rated UAS behavior as overwhelmingly appropriate
 – Rated ‘inadequate’ separation typically when SLoWC > 50%
 – Unnecessary maneuvers were noted typically identified when pilot disrupted pattern sequencing
 – Communications was the most common issue (primarily not receiving advisory from pilot on traffic or maneuver)
ATC Interoperability Results Summary

- Heading maneuvers most common, more altitude/speed changes against late and unscripted encounters
- Major maneuver issues were flights into terrain and 360s/turns near runway
- UAS actions largely rated appropriate by tower
 - Tower often called out cases with SLoWC > 50% & unnecessary turns near pattern
 - Lack of coordination biggest issue raised by Tower
Conclusion

• Phase 1 DAA Well Clear Definition
 – Pilots had a hard time judging when a maneuver was necessary to avoid high-severity LoDWC
 • None above 30% in PT6
 • 17 > 50% SLoWC; 6 > 70% due to pilot error (slow responses most common)

• Display Configuration
 – Modest benefits for D2
 • D1 resulted in slower average pilot response times and twice as many LoDWC caused by slow responses compared to D2
 • D3 had greatest proportion of high-severity LoDWC
 – Utility of corrective alert diminished near airport
 • Most Warning alerts either had no prior Corrective or Corrective < 15s

• Encounter Location
 – Late encounters responsible for most LoDWC
 – LoDWC with unscripted encounters were low in frequency and severity

• Additional
 – LoDWC typically resulted from pilot hesitation and late acceleration
 – Pilot rated well by ATC across the board with a few exceptions
 • E.g., rate of coordination, excessive maneuvering around final, flights into terrain
• Purpose: measure performance of DAA system using terminal-specific DAA well clear definitions
• Lessons learned to be leveraged in follow-on experiment
 – Removing pattern approach & early encounters from experimental design
 – Fewer scripted encounters
• Proposed IV’s:
 – Terminal DAA Well Clear candidate definitions:
 • AFRL: Horizontal = 0.2nm (~1215ft), Vertical = ±450ft, no Tau
 • Langley: TBD
 – Alert structure: with vs. without DAA Corrective
• Data collection begins 26 JANUARY