Prognostics As A Service (PaaS) Advisory Working Group

Initial Meeting
January, 2018
PaaS Team

Chris Teubert (NASA ARC): Project PI, Group Lead Diagnostics and Prognostics

Nelson Brown & Otto Schnarr (NASA AFRC): Autonomy, Large UAS/UAM

Patrick Quach (NASA LaRC): Small UAS

Mark Muha (NASA GRC): Security Expert

Robert Kerczewski (NASA GRC): Communications Expert

Jason Watkins (NASA ARC, SGT Inc.): Software Engineer
Meeting objectives:

1. Establish a common understanding of the PaaS project and concept
2. Establish a common understanding of the purpose of the working group
3. Introduce PaaS team members & WG members
4. Provide initial feedback and guidance to the PaaS Team
Prognostics

Prognostics uses sensor data to provide real-time assessment of

1. **Current Health State**
2. **Future Health States**
3. **Future Performance**
4. **Failure Prediction**

For systems, vehicles, airspaces

\[f_i(t) = f_p(p_i(t), u_i(t)) \]
\[f_b(t) = f_p(p_b(t), u_b(t)) \]

\[EOL(t_P) \triangleq \inf\{t \in \mathbb{R} : t \geq t_P \land T_{EOL}(x(t), \theta(t)) = 1\} \]
Prognostics - Utility

- Pilots
- Remote Operators
- Air Traffic Control
- UAS Traffic Management (UTM)
- Airline Dispatch
- Autonomy
- Maintainers
Prognostics - Utility

- Provide health information for components, vehicles, airspace

- Pilots
- Remote Operators
- Air Traffic Control
- UAS Traffic Management (UTM)
- Airline Dispatch

- Autonomy
- Maintainers

- Reduced Risk of failure of critical systems
- Reduced System Delays
Prognostics- Utility

Impact: Enabling Robust Autonomous Systems

Autonomous Systems that:
1. **Monitor** health in-flight
2. **Predict** failures in-flight
3. **Understand** how performance degrades
4. **Autonomously** make decisions based on this
Prognostics - Utility

- Pilots
- Remote Operators
- Air Traffic Control
- UAS Traffic Management (UTM)
- Airline Dispatch
- Autonomy

Maintainers

Reduced Maintenance Costs
PaaS Users

- Pilots
- Air Traffic Control
- Maintainers
- Remote Operators
- UAS Traffic Management (UTM)
- Airline Dispatch

All could potentially be human or autonomous
Prognostics As-A-Service (PaaS)

Identify, explore, and develop solutions to mitigate the technical barriers and design decision space for performing prognostics remotely, as-a-service at a large scale
Challenges

<table>
<thead>
<tr>
<th>Generalization</th>
<th>Can a single PaaS system support the wide variety of aircraft classes and configurations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Env Complexity</td>
<td>Can a PaaS system provide accurate predictions in complex environments?</td>
</tr>
<tr>
<td>Usefulness</td>
<td>Can the PaaS results be provided in such a way that they can inform significant action to maintain safety and efficiency?</td>
</tr>
<tr>
<td>Security</td>
<td>Can existing security solutions help PaaS operate in a way so as to protect Confidentiality, Integrity, and Availability?</td>
</tr>
<tr>
<td>Comms</td>
<td>Can PaaS handle the communication complexity involved with the architecture: including bandwidth constraints, dropout, etc.?</td>
</tr>
<tr>
<td>Trust</td>
<td>Can PaaS be designed so that the results will be trusted?</td>
</tr>
</tbody>
</table>
Prognostics As-A-Service Prototype

Sources: UAS

Sinks: GUI, Report Generator, Autonomy, etc.

Service Request, Sensor Data

Results

PaaS API (REST)

GUI

Prognostics Instance

Prognostics Instance

Prognostics Instance

PaaS System
April 2017

Project Formation
Identify the challenges of the PaaS architecture, formulate a project plan

April 2018

Prototype Development
Design, develop, and test prototype PaaS System

October 2018

CASTInG Gate & Further Development
Present PaaS at CASTInG Gate, pitch for integration with other projects.
Meanwhile continue to mature the PaaS prototype

April 2020

Feasibility Study
Study to establish the feasibility of overcoming the 6 primary challenges of the PaaS Architecture, and identify solutions to these

PaaS Working Group

Release, integrate into NASA projects
To advise in the identification and investigation of feasibility challenges for the PaaS Architecture, and on how feasibility can be established in a manner meaningful to industry and academia.
Working Group Membership

24 individuals from across government, industry, and academia

- Academia
- Urban Air Mobility
- Government
- Unmanned Aircraft Systems (UAS)
- Intelligent Data Providers
Discussion

Please say name and company/organization before speaking
Questions

- Why are you interested in prognostics as-a-service?
- What challenges do you see for this architecture?
- What would you need to feel that this technology is mature enough to use?
Challenges

<table>
<thead>
<tr>
<th>Category</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalization</td>
<td>Can a single PaaS system support the wide variety of aircraft classes and configurations?</td>
</tr>
<tr>
<td>Env Complexity</td>
<td>Can a PaaS system provide accurate predictions in complex environments?</td>
</tr>
<tr>
<td>Usefulness</td>
<td>Can the PaaS results be provided in such a way that they can inform significant action to maintain safety and efficiency?</td>
</tr>
<tr>
<td>Security</td>
<td>Can existing security solutions help PaaS operate in a way so as to protect Confidentiality, Integrity, and Availability?</td>
</tr>
<tr>
<td>Comms</td>
<td>Can PaaS handle the communication complexity involved with the architecture: including bandwidth constraints, dropout, etc.?</td>
</tr>
<tr>
<td>Trust</td>
<td>Can PaaS be designed so that the results will be trusted?</td>
</tr>
</tbody>
</table>
Backup Slides
Potential Strengths/Weaknesses of PaaS Architecture

Strengths
- Computational constraints
- Access to external data
- Ease of integration, maintenance
- Ease of extension
- Size, Weight, and Power (SWaP)
- Efficiency of resource sharing
- Data collection/learning

Weaknesses
- Communication security concerns
- Communication stability/availability
- Latency/bandwidth constraints
GSAP

- Live Sensor Data
- Future Loading
- State Estimation
- Prognostics Results

The Outside World

ProgManager

Communicators

Data

Prognosers

Support Library
Model-Based Prognoser

Observer Step
- Sensor Data
- Loading Data
 - Observer Algorithm
 - System Model

Estimated Health State
Future Loading (Flight Plan)

Prediction Step
- Predictor Algorithm
 - System Model

Remaining Useful Life
Prototype Shortcomings

- REST is not the best format for an API for streaming sensor data/results- Consider other architectures
Chosen Architecture

Architecture
Cloud Enhanced Prognostics

Utilizing Cloud Resources
As-A-Service

Reasoning for Architecture Choice
- Computational constraints
- Utilizing external data
- Ease of integration, Maintenance
- Ability to integrate new features
- Improve with use
- Size, Weight, and Power (SWaP)
- Resource Sharing (Efficiency)

Take-away
A cloud-enhanced architecture can provide prognostics technologies to all aircraft and includes additional efficiency, capability, and performance advantages
Demonstrating Feasibility

Test the ability to address the six challenges with a proof of feasibility system, for small and large UAS (UAM representative vehicles), with different end users

<table>
<thead>
<tr>
<th>Generalization</th>
<th>Env Complexity</th>
<th>Usefulness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security</td>
<td>Comms</td>
<td>Trust</td>
</tr>
</tbody>
</table>
Testing Communications and Environmental Complexity

Communication:
- Communications Constraints (e.g. Bandwidth, Latency)

Environmental Complexity:
- Different environmental factors

Experts from both of these will be involved with developing requirements, designing experiments, and final feasibility assessment.
Testing Security

A - Sensor Security
- Vehicle Sensor to Vehicle Aggregator Interface
- Aggregator/Agent Security

B: Broadcast Medium Security

C: Antenna Security

D: Inter Prognostics Service Utility Information processing (cloud)

E: Service Level Agreements (QoS, Security Levels Provided) between external receiver owners and prognostication utility.

F: eUtility (Cloud) resource access Cloud to data consumers

Protect Confidentiality, Integrity, and Availability (CIA Triad)

Security expert on team
Hardware-In-The-Loop FlightDeck

Leveraged for PaaS HITL
- Consists of cockpit with flight controls, autopilot, radio
- Connected to prognostics virtual lab
- Can display prognostics results on GUI on left screen

Operation Station
- Connected to prognostics virtual lab
- Controls experiment, can operate as ATC or Dispatch
Prognostics Virtual Lab

- Set of tools for distributed prognostics experiments
- LVC Gateway used to share network messages for aircraft, and systems
- Connect HITL Elements, Virtual and Real aircraft, prognostics algorithms, GUIs, etc.
Deliverables

- Feasibility Assessment Document
- Protocol Recommendations
- Publicly Released Proof of Concept PaaS system
- Publicly Released Data
Approach

1. Requirements
2. Design and build proof-of-concept
3. Test Early, Test Often
4. Disseminate data, software, results
5. Transition

Deliverables

- Publicly Released Proof of Concept PaaS system
- Protocol Recommendations
- Journal/Conference Publications
- Publicly Released Data
Fitting all this together
SHARP Laboratory

- Laboratory for the development of testbeds and test systems
- Verification and validation of mathematical models
- Electric propulsion system testbed
- Flight simulation system and flight deck
- Power supplies, oscilloscopes, and data acquisition systems.
Factors in Choosing PaaS Targets

These factors should be considered when choosing systems to target for PaaS:

1. Criticality of system
2. Difficulty
3. Likelihood of failure
4. Ability to detect health state and predict failure
5. Utility- ability to take action based on the results of prognostics
6. Commonality- How often is this system used on aircraft
Context Diagram

- Configuration
- Identification
- Sensor Data
- External Data
- PaaS
- Prognostics Results