Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

Issam Mudawar & Lucas O’Neill
Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL)
Mechanical Engineering Building, 585 Purdue Mall
West Lafayette, IN 47907

Mohammad Hasan, Henry Nahra, Nancy Hall & R. Balasubramaniam
NASA Glenn Research Center
Fluid Physics and Transport Branch
21000 Brookpark Rd,
Cleveland, OH 44135

Jeffrey Mackey
Vantage Partners, LLC
3000 Aerospace Parkway
Brook Park, OH 44142
Examples of Systems Demanding Predictive Models of Effects of Gravity on Two-Phase Flow and Heat Transfer

- Space Vehicle
- Astronaut Suit
- Martian Base
- Asteroid Landing
- Earth Orbiting Station
- Earth Orbiting Vehicles
- Satellites

Gravity Levels:
- g_e
- Moon: 0.17 g_e
- Mars: 0.38 g_e
- 1 g_e
- 10 g_e
The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

Overriding objectives are to:

1. Obtain flow boiling database in long-duration microgravity environment
2. Obtain flow condensation database in long-duration microgravity environment
3. Develop experimentally validated, mechanistic model for microgravity flow boiling critical heat flux (CHF) and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent CHF
4. Develop experimentally validated, mechanistic model for microgravity annular condensation and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent annular condensation; also develop correlations for other condensation regimes in microgravity
Consists of:
- nPFH sub-loop
- Water sub-loop

Contains three test modules:
- Flow Boiling Module (FBM)
- Condensation Module for Heat Transfer Measurements (CM-HT)
- Condensation Module for Flow Visualization (CM-FV)
Aside from stated goals of FBCE:

- Develop theoretical pressure drop models for adiabatic two-phase flow as well as boiling and condensing flows in reduced gravity
- Develop universal pressure drop correlations for adiabatic two-phase flow as well as boiling and condensing flows
- Develop universal heat transfer correlations for boiling and condensing flows
- Amass databases and video records for effects of flow orientation in one-G on boiling and condensing flows
- Initiate computational modeling of boiling and condensing flows
- Investigate transient behavior and instabilities in boiling and condensing flows
- Work closely with FBCE Engineering Team to expedite deployment on ISS
- Ensure readiness to utilizing future ISS databases and video records
High-Capacity Condensation Facility

Mini/micro-channel Condensation Facility

Parabolic Flight Condensation Facility

Falling-Film Heating/Evaporator Facility

One-G Flow Boiling Facility

Parabolic Flight Flow Boiling Facility

Hybrid Thermal Control System (H-TCS)
Flow Boiling CHF: Microgravity, One-G

Single-sided Heating
CHF (W/cm²) 90°

Double-sided Heating
CHF (W/cm²) 90°

Microgravity & One g_e Vertical Upflow

CHF [W/cm²] 45

FC-72
p_in = 100 kPa
ΔT_{sub,in} = 3°C

Heater Hₐ

Upward-facing Heater

Double-Sided Heating Data

H₂ 5.7%
Heat Transfer in Annular Condensation in Microgravity

Condensation Rig

Water Conditioning Rig

G = 90.2 kg/m²s
x_e,in = 0.73
(G_w = 678.0 kg/m²s)

G = 68.0 kg/m²s
x_e,in = 0.4
(G_w = 601.1 kg/m²s)

z = 351 mm, 4000 fps
z = 58 mm, 4000 fps
Heat Transfer in Annular Condensation at One-G

- Effects of flow orientation
- Control volume model
- Interfacial behavior
- Computational model
Universal Correlations for:

- Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Flows
- Heat Transfer Coefficient for Condensation
- Two-Phase Frictional Pressure Drop for Saturated Boiling
- Heat Transfer Coefficient for Saturated Flow Boiling
- Dryout Incipience Quality

Universal Correlations for Pressure Drop and Heat Transfer in Small Channels
Consolidated database:
10,805 saturated boiling heat transfer coefficient data points from 37 sources

- FC72, R11, R113, R123, R1234yf, R1234ze, R134a, R152a, R22, R236fa, R245fa, R32, R404A, R407C, R410A, R417A, CO₂, water
- 0.19 < \(D_h \) < 6.5 mm
- 19 < \(G \) < 1608 kg/m²s
- 57 < \(Re_f \) = \(GD_h/\nu \) < 49,820
- 0 < \(x \) < 1
- 0.005 < Reduced pressure < 0.69

\[
 Bo = \frac{q_H}{G h_{fg}}
\]

\[
 h_{tp} = \left(h_{nb}^2 + h_{cb}^2 \right)^{0.5}
\]

For nucleate boiling dominant regime :
\[
 h_{nb} = \left[2345 \left(Bo \frac{P_H}{P_F} \right)^{0.70} P_R^{0.38} \left(1 - x \right)^{0.51} 0.023 \left(Re_f^{0.8} \right) \left(Pr_f^{0.4} \right) \frac{k_f}{D_h} \right]^{-1}
\]

For convective boiling dominant regime :
\[
 h_{cb} = \left[5.2 \left(Bo \frac{P_H}{P_F} \right)^{0.08} We_f^{0.54} + 3.5 \left(\frac{1}{X_t} \right)^{0.94} \left(\frac{g}{f} \right)^{0.25} \right] \left[0.023 \left(Re_f^{0.8} \right) \left(Pr_f^{0.4} \right) \frac{k_f}{D_h} \right]^{-1}
\]

Since 2012:

- 6 Ph.D. and 2 M.S. degrees
- 48 articles published in *International Journal of Heat and Mass Transfer*
Pressure Drop in Flow Boiling Systems

- Pressure drop measurements provide insight into dominant fluid physics
- Experiments run in Vertical Upflow, Vertical Downflow, and Horizontal Flow
- Total of 829 ΔP data points
Flow Boiling Module

FC-72 Inlet

Flow Straightener

FC-72 Outlet

Support Plates (Aluminum)

Outer Channel Plates (Lexan)

O-rings

Flow Straightener

O-rings

Copper Slabs with Resistive Heaters

Channel Side Wall Plate (Lexan)

Development Length: \(L_d = 327.9 \text{ mm} \)
Heated Length: \(L_h = 114.6 \text{ mm} \)
Exit Length: \(L_e = 60.9 \text{ mm} \)

Channel Height: \(H = 5.0 \text{ mm} \)
Channel Width: \(W = 2.5 \text{ mm} \)
Correlations based on Homogeneous Equilibrium Model (HEM) perform fairly well overall.

At low mass velocities, “fish-tail effect” compromises overall accuracy (due to over-prediction of horizontal flow, under-prediction of vertical downflow).
• Large differences in predictive accuracy for correlations based on Separated Flow Model (SFM)

• Highest accuracy achieved with Kim & Mudawar (2012) universal correlation
- Study of two-phase flow heat transfer primarily deals with key time-averaged design parameters
 - Heat transfer coefficient, pressure drop, critical heat flux (CHF)
- Oscillations, instabilities, and other dynamic events can significantly impact system performance when:
 - Concerned with precise system control
 - Operating near a critical point (e.g., CHF, choking)
 - Undergoing continuous changes to operating environment
- Changing gravitational environment of space missions heightens importance of transient phenomenon
Investigation of two-phase flow instabilities originates with Ledinegg (Ledinegg Instability)

Broadly classifiable as:

- Dynamic Instabilities (Pressure Drop Oscillation, Density Wave Oscillation, Parallel Channel Instability, etc)
- Static Instabilities (Ledinegg Instability, Flow Pattern Transition)

Significant analytic and numeric work focused on characterization of system transient behavior

- Stability maps & transition correlations, 1-D and lumped parameter models, 2D/3D dynamic flow models

However, there is insufficient overlap with experimental work in many cases
Flow Boiling System Dynamic Behavior – Transient Results

Vertical Upflow

- Dominant frequency at ~2 Hz
- Secondary peak in 20-30 Hz range
- Sharp peaks in at 20, 40, 60, 80 Hz

G = 828.8 kg/m²s
\(\chi_{e, in} = 0.04 \)
\(q' = 10.2 \text{ W/cm}^2 \)
Flow Boiling System Dynamic Behavior – Transient Results

Vertical Downflow

- Similar primary and secondary peaks as vertical upflow, although with frequency shift
- Pump-induced sharp peaks again present

\[\text{G} = 860.6 \text{ kg/m}^2\text{s} \]
\[x_{\text{v, in}} = 0.03 \]
\[q = 10.2 \text{ W/cm}^2 \]
Flow Boiling System Dynamic Behavior – Transient Results

Horizontal Flow

- No secondary peak
- Pump-induced sharp peaks again present
- Amplitude much lower than vertical upflow and downflow
• Amplitude of primary oscillations increases with increasing heat flux

• Frequency of primary oscillation remains constant
Amplitude increases for Vertical Upflow
Amplitude remains \(\sim\) constant for vertical downflow
Amplitude decreases for horizontal flow
Amplitude of oscillations increase with increasing mass velocity

Frequency of primary oscillation also increases with increasing mass velocity

Vertical Upflow

- **G = 410.8 kg/m²s**
 - Double-sided Heating
 - $G = 410.8$ kg/m²s
 - $x_{e,in} = 0.02$
 - $q'' = 4.5$ W/cm²

- **G = 834.1 kg/m²s**
 - Double-sided Heating
 - $G = 834.1$ kg/m²s
 - $x_{e,in} = 0.04$
 - $q'' = 7.3$ W/cm²

- **G = 1636.5 kg/m²s**
 - Double-sided Heating
 - $G = 1636.5$ kg/m²s
 - $x_{e,in} = 0.01$
 - $q'' = 7.3$ W/cm²
Flow Boiling System Dynamic Behavior – Effect of Mass Velocity

Vertical Upflow

Density Wave Oscillations

Lahey & Podowski (1989):

\[\tau_{DWO} \sim 2 \frac{L_{ts}}{U_{FC}} \]

\[f_{DWO} = \tau_{DWO} \sim \frac{U_{FC}}{2L_{ts}} \]
Flow Boiling System Dynamic Behavior – Effect of Mass Velocity

Vertical Upflow

Double-sided Heating
G = 410.8 kg/m²s
x_{e,in} = 0.02
q" = 4.5 W/cm²

f_{DWO} \sim 1.09 \text{ Hz}

Double-sided Heating
G = 834.1 kg/m²s
x_{e,in} = 0.04
q" = 7.3 W/cm²

f_{DWO} \sim 2.27 \text{ Hz}

Double-sided Heating
G = 1636.5 kg/m²s
x_{e,in} = 0.01
q" = 7.3 W/cm²

f_{DWO} \sim 4.49 \text{ Hz}
Boiling and Two-Phase Flow Laboratory (BTPFL)

Flow Boiling System Dynamic Behavior – New Experimental Approach

- Perform pressure measurement at more locations throughout the flow loop
- Use information to isolate effect of upstream and downstream components
- Include accumulator for more representative system dynamics

![Flow Boiling System Diagram](image)
1. Fast Fourier transform of transient ΔP results reveals three key dynamic phenomenon:
 • Low frequency (1-10 Hz), high amplitude oscillation with characteristics of Density Wave Oscillations
 • Moderate frequency (5-30 Hz), low amplitude oscillation for vertical upflow and downflow
 • High frequency (20-100 Hz), sharp peaks attributable to pump behavior

2. Clear impact of changes to flow rate, heat flux, and orientation on flow oscillatory behavior
 • Effects of flow quality unclear

3. Identification of dominant oscillatory frequency possible for vertical upflow using simple, classic approach

4. Insufficient information on upstream and downstream dynamic behavior limits modelling
The Flow Boiling and Condensation Experiment is supported by NASA grant NNX13AB01G.

The system dynamic behavior work was supported by NASA Space Technology Research Fellowship NNX15AP29H.

Presenters thanks NASA Glenn Research Center for technical assistance provided while gathering experimental data shown here.