Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

David J. Israel
March 5, 2018
The Space Network provides tracking and data acquisition services to spacecraft below geosynchronous orbit, and can connect user spacecraft with 100% coverage of the user's orbit.
Generations of TDRS

First Generation
TDRS-A to TDRS-G

Second Generation
TDRS-H to TDRS-J

Third Generation
TDRS-K to TDRS-M

TDRS-M LAUNCH:
August 18, 2017

TDRS-13 ACCEPTANCE:
February 2018
Disaggregated Communications

RF and optical communications are built and deployed on separate systems.
Disaggregation Benefits

• Fleet management at individual service level

• Greater opportunity for commercialization of RF services
The Future of NASA Space Comm: Optical Communications

Optical communications systems are under development to enable support of tremendous volumes of data at higher rates with quicker response times.

Optical communications will enable:

- Speed and Volume
- Less SWaP
- Availability
Optical: State of the Technology

Lunar Laser Communications Demonstration 2013-2014
“Proof of Concept” COMPLETE

Laser Communications Relay Demonstration Launch: 2019
“Relay Operations Demonstration” UNDER DEVELOPMENT

ILLUMA-T
Optical to Orion (EM-2)
“Mission Operations Demonstration” UNDER DEVELOPMENT
Key Features of LCRD

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two optical modules</td>
<td>10.8-cm telescope, 2-axis gimbal</td>
</tr>
<tr>
<td>Laser</td>
<td>1550 nm at 0.5W</td>
</tr>
<tr>
<td>RF downlink</td>
<td>Spacecraft bus provided</td>
</tr>
<tr>
<td>Module-to-module switching</td>
<td>Gbps-class high-speed space switching unit</td>
</tr>
<tr>
<td>Data rates</td>
<td>Up to 1.244 Gbps forward and return links</td>
</tr>
<tr>
<td>Optical ground stations</td>
<td>Haleakala, HI</td>
</tr>
<tr>
<td></td>
<td>Table Mountain, CA</td>
</tr>
<tr>
<td>Mission operations center</td>
<td>GSFC Space Network at WSC, NM</td>
</tr>
</tbody>
</table>
An optical relay capability is being targeted for a 2025 launch as the first node of the next-generation relay architecture. Early studies and technology developments are underway.
NASA’s Next Generation Earth Relay

- Gen-2 GEO Optical Relay
 - 100 Gbps Crosslinks
 - 10 Gbps User Links

- 1.2 Gbps Ka-band
downlink
 - 99.99% Available

- 100 Gbps downlink
 - 97% Available

- Gen-2 User Terminal
 - 10 Gbps User Link

- SCanN
 - Operated Gen-1 OGS
 - Gen-1 Optical Ground Station

- Operations Center
Next-Generation Earth Relay Concept of Operations

Satellite A is over the Atlantic.
Satellite B is over the Pacific.
Satellite C is over the Indian Ocean.
Next-Generation Earth Relay Payload Nomenclature

Spacecraft/Platform

Optical Communications Payload

Other Required Subsystems

Optical Space Terminal

Optical Module

Modem with Beacon, Amplifier and CODEC

Controller Electronics

Other Required Subsystems:

- Storage
- Data Processing
- Switch/Router
- Optical Comm Payload Controller
Conclusions

• The requirements for the first optical relay nodes continue to be refined.
• Relay nodes could be dedicated spacecraft or hosted payloads.
• Alternate acquisition strategies for the relay node are also under assessment.
 – Procure optical relay services, if commercially available
 – Form partnership with commercial entity