Tools for Software Based Validation and Verification of Small Satellites

Matt Grubb
Matthew.d.grubb@nasa.gov

Small Sat Workshop 2016
Overview

What is NOS3?

• A software test bed for small satellites – Currently a Functional Beta
• Based upon STF-1 hardware, but sufficiently generic
• Easily-interfases to CFS, but CFS not required
• Openly distributed solution Ready-to-Run (RTR)
• A collection of Linux executable and libraries
• Test as you fly

What is it used for?

• FSW early-development – NOS3 provides real-world inputs to FSW
• FSW V\&V – Testing FSW, invalid inputs, behavior, stress conditions
• FSW Integration – Used for early-app development and payload team integration
• Mission Planning – Example: power analysis

3NASA Operational Simulator for Small Satellites
NOS³ Components

- Virtual Machine – for running NOS³
- NOS Engine Middleware
- Hardware Simulators
- FSW Hardware Abstraction Layer
- Orbit Inview & Power Prediction (OIPP) Tool
- CFS – Flight Software
- 42 – Dynamics Simulation and Visualization
- COSMOS – Commanding & Telemetry

nos³
NASA Operational Simulator for Small Satellites

ITC
Independent Test Capability
Virtual Machine Auto Generation

• Install *Vagrant* and *VirtualBox*
• Run `vagrant up`
• Developer build tools installed
• Convenience scripts for building/running
• Ready-to-run after unpacking a .tar
NOS Engine Middleware

• ITC developed middleware
• Common server to communicate to all data nodes (CFS, Hardware simulators, Time ticker, Command terminals)
• C API
• I2C, UART and SPI protocols
• Asynchronous and Synchronous
Hardware Simulators

• Modeled based on characteristic data, or manufacturers data specifications

• Currently have modeled
 – Novatel GPS
 – Clyde EPS
 – Honeywell Magnetometer
 – ISISpace Antenna System
 – A3200 support chips (FRAM, Gyro
Flight Software (CFS)

• Open source flight software developed by GSFC

• Includes an OS Abstraction Layer
 – Allows building for flight and NOS³ targets on same machine without source code changes

• Additional Platform-Support-Package (PSP) added to sync CFS time with NOS³
42

GSFC Open Source Dynamics Simulator

• NOS3 TCP/IP Socket Integration
• Simulation time synchronized with NOS3
• Moving toward closed loop
COSMOS

• Open Source for embedded system commanding and telemetry
• Currently connects to CFS TO_lab
 – Future plan is to have radio simulator to replace TO_lab
• Can be used for operator training, testing table loads to SC, verifying command and telem databases, etc.
COSMOS
Orbit, Inview, and Power Prediction

• Web page: Generated daily by cron job

• TLE Data pulled from http://celestrak.com as obtained from NORAD

• Time Periods (configurable)
 • Yesterday, Today, Future

• Displays
 • Ground station in-views
 • Sunlight and Eclipse times
Orbit, Inview, and Power Prediction (OIPP)

<table>
<thead>
<tr>
<th>Times Displayed are EDT</th>
<th>04-01 23:59:56-04:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report Generation Time</td>
<td>Report was generated at: 2016-04-01 04:22:10.482481-04:00</td>
</tr>
</tbody>
</table>

Wallop Antenna Day Shift
- Wallops Antenna - S/C 39404 Inviews
 - 01
- Morehead Antenna Day Shift
 - 01
- SRI Palo Alto Antenna Day Shift
 - 01

S/C 39404 In Sunlight Times
- 01

Wallop Antenna - S/C 77777 Inviews: 12:43 pm - 12:50 pm
Duration: 0.12 hours
Backup Slides
NOS3
Utilization Example for STF1