Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

Appendices

Robert N. Coppolino
Measurement Analysis Corporation, Reston, Virginia
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NTRS Registered and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question to help@sti.nasa.gov

- Phone the NASA STI Information Desk at 757-864-9658

- Write to:

 NASA STI Information Desk

 Mail Stop 148

 NASA Langley Research Center

 Hampton, VA 23681-2199
Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

Appendices

Robert N. Coppolino
Measurement Analysis Corporation, Reston, Virginia
The use of trademarks or names of manufacturers in the report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.
Table of Contents

Appendix A. Launch Vehicle Propellant Tank Hydroelastic Analysis (1976-2016) ..1
Appendix B. Review and Recommendations regarding NESC-RP-14-00946 ..30
Appendix C. Evaluation of ISPE Model Sensitivities ..40
Appendix D. Consolidation of Body Modes for an “Axisymmetric” Shell Structure147
Appendix E. Verification of Experimental Modes (*ISPE case study using SFD modes*)187
Appendix A: Launch Vehicle Propellant Tank Hydroelastic Analysis (1976-2016)

Robert N. Coppolino, Consultant
14 October 2016
Contents

1. Introduction
2. Mathematical Foundations
3. Dynamic Behavior of Propellant Tanks
4. Efficient Hydroelastic Tank Analysis
5. Concluding Remarks
The Hydroelastic Launch Vehicle

- Typical liquid propellant launch vehicle mass distribution is ~80% fluid mass (full tanks)
- Fluid behavior in frequency band of interest is typically incompressible (except SLS, others)
- Three classes of hydroelastic normal modes
 - Slosh (low frequency, rigid structure)
 - Body (mid frequency, axial, bending, bulge)
 - Shell breathing (mid frequency, numerous!)
- Hydroelasticity plays a key role in L/V POGO
 - Propellant tank dynamics (present discussion)
 - Feedsystem (propellant line) dynamics
 - POGO suppression components
NASA CR-2662 and Subsequent Developments

- COSMIC NASTRAN DMAP (1976)
- MSC NASTRAN Code (1988)
- UAI NASTRAN Code (1999)
- Implementations by ATA & Others
- Current Thoughts & Suggestions

- Complementary Energy Principles
- Symmetric Matrix Formulations
- Model Order Reduction Strategies
- Selection of Significant Modes
- Effective, Efficient Dynamic Models
Contents

1. Introduction

2. Mathematical Foundations

3. Dynamic Behavior of Propellant Tanks

4. Efficient Hydroelastic Tank Analysis

5. Concluding Remarks
Inviscid Fluid (small displacement)

\[P = \rho g \cdot U_z \]

\[\dot{P} = \int_{-\infty}^{\infty} P \cdot dt \]

\[\dot{U} = -\frac{1}{\rho} \nabla \dot{P} \]

\[\nabla \cdot \dot{U} = -\frac{1}{B} \dot{P} \]

A systematic formulation to describe dynamics of the fluid is required

Tank structure (well established)

\[[M]\{\ddot{u}\} + [K]\{u\} = [A]\{P\} + [F_c]\{F_c\} \]
Inviscid Fluid
(based on Toupin’s variational principle, 1952)

\[T_c = \frac{1}{2} \int_v \rho \left(\dot{\mathbf{U}} \cdot \mathbf{U} \right) \cdot dV = \frac{1}{2} \int_v \frac{1}{\rho} \left(\nabla \mathbf{P} \cdot \nabla \mathbf{P} \right) \cdot dV \]

\[U_c = \frac{1}{2} \int_v B \left(\nabla \cdot \mathbf{U} \right)^2 \cdot dV = \frac{1}{2} \int_v \frac{1}{B} \left(\mathbf{\dot{P}} \right)^2 \cdot dV \]

\[\delta W_c = \int_A \delta \mathbf{U} \cdot \mathbf{\dot{P}} \cdot dA \]

\[\int_{-\infty}^{t_f} \left(\delta T_c - \delta U_c + \delta W_c \right) \cdot dt = 0 \]

\[[C][\dot{P}] + [S][P] = -[A]^T \{ \ddot{U} \} - [\Gamma_Q] \dot{Q}_{tb} \]
Fluid-Structure Interaction Equations
(Zienkeiwicz, Herting, Cosmic Nastran)

\[
\begin{bmatrix}
M & 0 \\
A^T & C
\end{bmatrix}
\begin{bmatrix}
\ddot{U} \\
\ddot{P}
\end{bmatrix}
+ \begin{bmatrix}
K & -A \\
0 & S
\end{bmatrix}
\begin{bmatrix}
U \\
P
\end{bmatrix}
= \begin{bmatrix}
\Gamma_F & 0 \\
0 & -\Gamma_Q
\end{bmatrix}
\begin{bmatrix}
F_e \\
Q_{ib}
\end{bmatrix}
\]

- Unconventional, non-symmetric matrix equations
- Sparse [M], [K], [C], [S], [A] matrices
- Computationally difficult modal analysis (early 1970’s)
- Re-cast for conventional modal analysis (1976-2016)
- Incompressible & compressible fluid forms
Fluid-Structure Interaction Equations
(Symmetric Incompressible Fluid, NASA CR-2662)

\[
[C][\ddot{P}] + [S][P] = -[A]^T \{ \ddot{U} \} - [\Gamma_Q] \ddot{\Phi}_{tb}
\]

\[
\{ \ddot{P} \} = -[S^{-1}A^T] \{ \dddot{U} \} - [S^{-1}T_Q] \ddot{\Phi}_{tb}
\]

\[
P_{tb} = [\Gamma_Q^T] \{ \dddot{P} \} = -[\Gamma_Q^T S^{-1}A^T] \{ \dddot{U} \} - [\Gamma_Q^T S^{-1}T_Q] \ddot{\Phi}_{tb}
\]

\[
\begin{bmatrix}
M + AS^{-1}A^T & AS^{-1}T_Q \\
\Gamma_Q^T S^{-1}A^T & \Gamma_Q^T S^{-1}T_Q
\end{bmatrix}
\begin{bmatrix}
\dddot{U} \\
\dddot{\Phi}_{tb}
\end{bmatrix}
+ \begin{bmatrix}
K & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\dddot{U} \\
\dddot{Q}_{tb}
\end{bmatrix}
= \begin{bmatrix}
\Gamma_F & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
\Gamma_e \\
P_{tb}
\end{bmatrix}
\]
Fluid-Structure Interaction Equations
(Symmetric Incompressible Fluid, NASA CR-2662)

\[
\begin{bmatrix}
M + AS^{-1}A^T & AS^{-1}T_Q \\
\Gamma_Q^TS^{-1}A^T & \Gamma_Q^T S^{-1} \Gamma_Q
\end{bmatrix}
\begin{bmatrix}
\ddot{U} \\
\ddot{Q}_{tb}
\end{bmatrix}
+ \begin{bmatrix}
K & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
U \\
Q_{tb}
\end{bmatrix}
= \begin{bmatrix}
\Gamma_F & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
F_e \\
P_{tb}
\end{bmatrix}
\]

Tank bottom outflow susceptance

Tank bottom pressure coefficients

- Matrix equation set conforms to conventional structural dynamics
 - special operations required due to generally singular \([S]\)
- Accommodates definition of a modal component
 - with consistent interface partitions for connection to the L/V feedsystem.
Fluid-Structure Interaction Equations
(Symmetric Compressible Fluid, 2016)

Introduce the generalized volume strain variable, \([C][P] = \{V\}\)

\[\{P\} = \begin{bmatrix} C^{-1} \end{bmatrix} \{V\} = -\begin{bmatrix} S^{-1} A^T \end{bmatrix} \{\dot{U}\} - \begin{bmatrix} S^{-1} \end{bmatrix} \{\ddot{V}\} - \begin{bmatrix} S^{-1} \Gamma_Q \end{bmatrix} \ddot{Q}_{tb}\]

\[P_{tb} = \begin{bmatrix} \Gamma_Q^T \end{bmatrix} \{P\} = -\begin{bmatrix} \Gamma_Q^T S^{-1} A^T \end{bmatrix} \{\dot{U}\} - \begin{bmatrix} \Gamma_Q^T S^{-1} \end{bmatrix} \{\ddot{V}\} - \begin{bmatrix} \Gamma_Q^T S^{-1} \Gamma_Q \end{bmatrix} \ddot{Q}_{tb}\]

\[
\begin{bmatrix}
M + AS^{-1}A^T & AS^{-1} & AS^{-1}\Gamma_Q \\
S^{-1}A^T & S^{-1} & S^{-1}\Gamma_Q \\
\Gamma_Q S^{-1}A^T & \Gamma_Q S^{-1} & \Gamma_Q S^{-1}\Gamma_Q
\end{bmatrix}
\begin{bmatrix}
\ddot{U} \\
\ddot{V} \\
\ddot{Q}_{tb}
\end{bmatrix}
+
\begin{bmatrix}
K & 0 & 0 \\
0 & C^{-1} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
U \\
V \\
Q_{tb}
\end{bmatrix}
=
\begin{bmatrix}
\Gamma_F & 0 \\
0 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
F_c \\
P_{tb}
\end{bmatrix}
\]

- Matrix equation set conforms to conventional structural dynamics
 - fully populated mass matrix, potential computational inefficiencies
- Accommodates definition of a modal component
Hydroelastic Tank Modal Analysis

General strategy

\[
\begin{bmatrix}
M + AS^{-1}A^T & AS^{-1} \\
S^{-1}A^T & S^{-1}
\end{bmatrix}
\begin{bmatrix}
\dot{\mathbf{U}} \\
\dot{\mathbf{Q}}_b
\end{bmatrix}
+ \begin{bmatrix}
K & 0 \\
0 & C^{-1}
\end{bmatrix}
\begin{bmatrix}
\mathbf{U} \\
\mathbf{V}
\end{bmatrix}
= \begin{bmatrix}
\Gamma_F & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{F}_e \\
\mathbf{P}_b
\end{bmatrix}
\]

\[
\begin{bmatrix}
M_{UU} & M_{UQ} \\
M_{QU} & M_{QQ}
\end{bmatrix}
\begin{bmatrix}
\ddot{\mathbf{U}} \\
\ddot{\mathbf{Q}}_b
\end{bmatrix}
+ \begin{bmatrix}
K_{UU} & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{U} \\
\mathbf{Q}_b
\end{bmatrix}
= \begin{bmatrix}
\mathbf{F}_U \\
-\mathbf{P}_b
\end{bmatrix}
\]

\[
\{\mathbf{U}\} = [\Phi]\{\mathbf{q}\}, \quad [K_{UU}]\{\Phi\} = [M_{UU}][\Phi]\lambda
\]

\[
\begin{bmatrix}
I & m_{qQ} \\
m_{Qq} & M_{QQ}
\end{bmatrix}
\begin{bmatrix}
\dddot{\mathbf{q}} \\
\dddot{\mathbf{Q}}_b
\end{bmatrix}
+ \begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{q} \\
\mathbf{Q}_b
\end{bmatrix}
= \begin{bmatrix}
\Phi^T\mathbf{F}_U \\
-\mathbf{P}_b
\end{bmatrix}
\]
Contents

1. Introduction

2. Mathematical Foundations

3. Dynamic Behavior of Propellant Tanks

4. Efficient Hydroelastic Tank Analysis

5. Concluding Remarks
Propellant Tank Steady Load Profile
(ullage and hydrostatic pressure)

\[P_{\text{steady}} = P_{\text{ullage}} + \rho a_g H \]

- The effect of steady loading is expressed as “differential” stiffness
- Some (balloon) tank configurations have extremely thin walls
 - and “differential” stiffness from ullage pressure is necessary & dominant
Significance of Differential Stiffness
(shallow shell theory modal solution, NASA SP-106, 1966)

\[
u_R = \sin\left(\frac{m\pi x}{L}\right) \cdot \cos(m\varphi) \cdot e^{i\omega t}
\]

\[
m_f = \rho_i R \cdot \left[I_n \left(\frac{nR}{L}\right) \right] - \frac{1}{2} \left(\frac{m\pi}{L}\right)^2 + \frac{1}{2} \left(\frac{n}{R}\right)^2
\]

\[
(p_s h + m_f) \cdot \omega^2 = \frac{Eh}{R^2} \left[\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n}{R}\right)^2 \right] + D \cdot \left[\left(\frac{m\pi}{L}\right)^2 + \left(\frac{n}{R}\right)^2 \right] + \rho_o R \cdot \left[\frac{1}{2} \left(\frac{m\pi}{L}\right)^2 + \left(\frac{n}{R}\right)^2 \right]
\]
Significance of Differential Stiffness
(ullage pressure does not ordinarily affect axial & bending modes)

There are many shell breathing modes in the same frequency band as axial (n=0) and bending (n=1) modes. How significant are the shell breathing modes?
Significance of Shell Breathing Modes

(*typical upper stage LOX tank*)
Significance of Shell Breathing Modes
(Hurty-Craig-Bampton modal component)

- Interior & boundary dof partitions
 \[\{u\} = \begin{bmatrix} u_i \\ u_b \end{bmatrix} = \begin{cases} \text{Interior Motions} \\ \text{Boundary Motions} \end{cases} \]

- Partitioned dynamic equations
 \[
 \begin{bmatrix}
 M_{ii} & M_{ib} \\
 M_{bi} & M_{bb}
 \end{bmatrix}
 \begin{bmatrix}
 \ddot{u}_i \\
 \ddot{u}_b
 \end{bmatrix}
 +
 \begin{bmatrix}
 B_{ii} & B_{ib} \\
 B_{bi} & B_{bb}
 \end{bmatrix}
 \begin{bmatrix}
 \dot{u}_i \\
 \dot{u}_b
 \end{bmatrix}
 +
 \begin{bmatrix}
 K_{ii} & K_{ib} \\
 K_{bi} & K_{bb}
 \end{bmatrix}
 \begin{bmatrix}
 u_i \\
 u_b
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0
 \end{bmatrix}
 \]

- Fixed boundary + constraint mode transformation
 \[
 \begin{bmatrix}
 u_i \\
 u_b
 \end{bmatrix}
 =
 \begin{bmatrix}
 \Phi_i & -K_{ii}^{-1}K_{ib} \\
 0_{bi} & I_{bb}
 \end{bmatrix}
 \begin{bmatrix}
 q_n \\
 u_b
 \end{bmatrix}
 =
 \begin{bmatrix}
 \Phi_i & \Psi_{ib} \\
 0_{bi} & I_{bb}
 \end{bmatrix}
 \begin{bmatrix}
 q_n \\
 u_b
 \end{bmatrix}
 \]
Hurty-Craig-Bampton component (cont’d)

- Reduced mass and stiffness matrices

\[
\begin{bmatrix}
I_{ii} & P_{ib} \\
P_{bi} & M'_{bb}
\end{bmatrix}
\begin{bmatrix}
\ddot{q}_i \\
\ddot{u}_b
\end{bmatrix}
+ \begin{bmatrix}
\omega_{i}^2 & 0_{ib} \\
0_{bi} & K'_{bb}
\end{bmatrix}
\begin{bmatrix}
q_i \\
u_b
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

- Modes with low modal participation factors (or modal effective mass, \(M_{eff} = P_{ib}^2\)) are self-equilibrating & do not significantly interact with other substructures.
Typical Upper Stage LOX Tank

(a few slosh, axial & lateral modes \([n=0,1]\) are significant)

- 200+ modes, \(f<250\) Hz
- \(n=0\): 5 modes, \(M_{\text{EFF}} > 1\%\)
- \(n=1\): 9 modes, \(M_{\text{EFF}} > 1\%\)
- \(n=1\): 9 modes, \(M_{\text{EFF}} > 1\%\)

Note: Employment of \(P=0\) on the free surface will eliminate slosh modes
Hydroelastic Tank Behavior and Challenges

• Behavior
 – Many component modes (slosh, axial, lateral, shell breathing)
 – Ullage & fluid inertia loading affects only shell breathing modes
 – Selected slosh, axial & lateral (n=0,1) modes are of significance

• Challenges
 – Large-Order Symmetric Hydroelastic Mass Matrices
 – Many non-significant modes in the frequency band of interest
 – Need for Efficient Modal Analysis Techniques
 – Verification and Validation of Hydroelastic Systems
Contents

1. Introduction
2. Mathematical Foundations
3. Dynamic Behavior of Propellant Tanks
4. Efficient Hydroelastic Tank Analysis
5. Concluding Remarks
Hydroelastic Tank Modal Analysis
(Symmetric Incompressible Fluid, NASA CR-2662)

- System dynamic equations with tank bottom outflow
 \[
 \begin{bmatrix}
 M + AS^{-1}A^T & AS^{-1}Q \\
 Q^T S^{-1} A^T & Q^T S^{-1} Q
 \end{bmatrix}
 \begin{bmatrix}
 \ddot{U} \\
 \ddot{Q}_{tb}
 \end{bmatrix}
 + \begin{bmatrix}
 K & 0 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 U \\
 Q_{tb}
 \end{bmatrix}
 = \begin{bmatrix}
 \Gamma_F \\
 0
 \end{bmatrix}F_e
 - \begin{bmatrix}
 0 \\
 -1
 \end{bmatrix}P_{tb}
 \]

- Closed-bottom tank modes
 \[
 [K]\{\Phi\} = [M + AS^{-1}A^T]\{\Phi\}\lambda

 - numerical inefficiency due to the full fluid mass matrix
Hydroelastic Tank Modal Analysis
(*Symmetric Incompressible Fluid, NASA CR-2662*)

- Closed tank bottom modes
 \[
 \begin{bmatrix}
 K \\
 \Phi
 \end{bmatrix} = \begin{bmatrix}
 M + AS^{-1}A^T
 \end{bmatrix} \{\Phi\} \lambda
 \]

- Efficient shape function reduction
 - Modern "load-patch" shape vectors (recent IMAC papers)

 \[
 \{\Phi\} = \begin{bmatrix}
 \Psi
 \end{bmatrix} \{\phi\} \quad \text{(reduction transformation)}
 \]

 \[
 \begin{bmatrix}
 k
 \\
 m
 \end{bmatrix} = \begin{bmatrix}
 \Psi^T K \Psi \\
 \Psi^T M \Psi
 \end{bmatrix} + \begin{bmatrix}
 \Psi^T A S^{-1} A^T \Psi
 \\
 \Psi^T \Psi
 \end{bmatrix}
 \]

 \[
 \begin{bmatrix}
 k
 \\
 m
 \end{bmatrix} \{\phi\} = \begin{bmatrix}
 m
 \end{bmatrix} \{\phi\} \lambda \quad \text{(reduced order eigenvalue problem)}
 \]
Reduction Transformations (1976, 2016)

Harmonic Reduction (1976)

Load Patches (2016)

A displacement transformation ([U]=[G][U⁺]) does not readily describe stiffness non-symmetries, while load patches ([Ψ]=[K⁻¹][F]) are more accommodating.
Hydroelastic Tank Modal Analysis

(Symmetric Compressible Fluid, 2016)

Introduce the generalized volume strain variable, \([C][P] = \{V\} \)

\[
\{P\} = [C^{-1}][V] = -[S^{-1}A^T][\ddot{U}] - [S^{-1}][\ddot{V}] - [S^{-1}\Gamma_Q][\ddot{Q}_{tb}]
\]

\[
P_{tb} = [\Gamma_Q^T][P] = -[\Gamma_Q^T S^{-1} A^T][\ddot{U}] - [\Gamma_Q^T S^{-1}][\ddot{V}] - [\Gamma_Q^T S^{-1} \Gamma_Q][\ddot{Q}_{tb}]
\]

\[
\begin{bmatrix}
M + AS^{-1}A^T & AS^{-1} & AS^{-1}\Gamma_Q \\
S^{-1}A^T & S^{-1} & S^{-1}\Gamma_Q \\
\Gamma_Q^T S^{-1} A^T & \Gamma_Q^T S^{-1} & \Gamma_Q^T S^{-1} \Gamma_Q
\end{bmatrix}
\begin{bmatrix}
\ddot{U} \\
\ddot{V} \\
\ddot{Q}_{tb}
\end{bmatrix}
+ \begin{bmatrix} K & 0 & 0 \\
0 & C^{-1} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
U \\
V \\
Q_{tb}
\end{bmatrix}
= \begin{bmatrix} \Gamma_F & 0 \\
0 & 0 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
F_c \\
P_{tb}
\end{bmatrix}
\]

- Matrix equation set conforms to conventional structural dynamics
 - fully populated mass matrix, potential computational inefficiencies
- Accommodates definition of a modal component
Hydroelastic Tank Modal Analysis

(Symmetric Compressible Fluid, 2016)

- Closed tank bottom (unsymmetric eigenvalue problem)
 - Solved via *sparse* “complex” Lanczos or other modern algorithm

 \[
 \begin{bmatrix}
 K & -A \\
 0 & S
 \end{bmatrix}
 \begin{bmatrix}
 \Phi_U \\
 \Phi_P
 \end{bmatrix}
 =
 \begin{bmatrix}
 M & 0 \\
 A^T & C
 \end{bmatrix}
 \begin{bmatrix}
 \Phi_U \\
 \Phi_P
 \end{bmatrix}^\lambda
 \]

- Introduce the “dilatational” transformation

 \[
 [C]\{\Phi_P\} = \{\Phi_V\}
 \]

- Normalize and verify “real” modes (using sparse calcs)

 \[
 \begin{bmatrix}
 \Phi_U^T \\
 \Phi_V
 \end{bmatrix}
 \begin{bmatrix}
 M + AS^{-1}A^T & AS^{-1} \\
 S^{-1}A^T & S^{-1}
 \end{bmatrix}
 \begin{bmatrix}
 \Phi_U \\
 \Phi_V
 \end{bmatrix}
 = [I]
 \]

 \[
 \begin{bmatrix}
 \Phi_U^T \\
 \Phi_V
 \end{bmatrix}
 \begin{bmatrix}
 K & 0 \\
 0 & C^{-1}
 \end{bmatrix}
 \begin{bmatrix}
 \Phi_U \\
 \Phi_V
 \end{bmatrix}
 = [\lambda]
 \]
Hydroelastic Tank Modal Analysis
(Practical Engineering Options)

<table>
<thead>
<tr>
<th>Sparse Matrix Computation</th>
<th>Reduced Order Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compute all modes for the sparse, unsymmetric system.</td>
<td>1. Impose an appropriate dof reduction transformation on</td>
</tr>
<tr>
<td>2. Transform modal pressure dofs: ([\Phi_N] = [C][\Phi_p]).</td>
<td>the structure.</td>
</tr>
<tr>
<td>3. Normalize system modes to unit modal mass.</td>
<td>2. Compute system modes via:</td>
</tr>
<tr>
<td>4. Select significant system modes based on modal effective</td>
<td>a. Symmetric modal analysis for incompressible fluid.</td>
</tr>
<tr>
<td>mass (generally “tens” of modes among “thousands”).</td>
<td>b. Unsymmetric modal analysis for compressible fluid.</td>
</tr>
<tr>
<td></td>
<td>3. Select few significant “slosh” modes based on modal</td>
</tr>
<tr>
<td></td>
<td>effective mass.</td>
</tr>
</tbody>
</table>
5. Concluding Remarks

1. Mixed fluid pressure-structural displacement equations transform to a symmetric structural dynamic form.

2. Hydroelastic tank axial & bending modes are generally not affected by steady loading (differential stiffness)

3. A small subset of hydroelastic modes are identified as “significant” on the basis of modal effective mass.

4. Numerically efficiency in modal analysis is realized via (a) sparse matrix operations and/or (b) application of reduction transformations.

5. Suggested topics for academic research include (a) evaluation of effects of non-axisymmetry on significant “body modes” and (b) hydroelastic modal test-analysis correlation.
Appendix B. Review and Recommendations regarding NESC-RP-14-00946

Robert N. Coppolino
Measurement Analysis Corporation
December 5, 2016

Executive Summary

Based on review of NESC-RP-14-00946, a series of recommendations are made with regard to finite element modeling, modal testing, and sensitivity analyses focusing on SLS core vehicle stage IV&V. They are:

1. **Include appropriate subassembly interconnection detail (joints) in the system dynamic model.** A common deficiency in modern structural dynamic models is the result of naïve oversimplification of interconnecting joints between structural components and subassemblies. It is all too easy to simply “join” parts without provision for local flexibilities (e.g., riveted, bolted and welded connections). This lack of essential parametric flexibility commonly leads to unrealistic model adjustments that vary a component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized” model sophistication at joints has produced satisfying results in recent projects.

2. **Focus on Core Vehicle Stage Target Modes.** One opinion suggests that mapping of virtually all modes in a selected frequency band (e.g., 0≤f≤50 Hz) be measured and validated using standard criteria (Ref 5). This approach incurs a severe instrumentation penalty to map all circumferential harmonic breathing modes in the selected frequency band. An alternative opinion (the writer’s) suggests mapping of body modes that are relevant to IV&V of core vehicle stage dynamics (for all propellant loading conditions) in the 0≤f≤50 Hz frequency band. Adoption of the alternative opinion requires some rethinking of core vehicle modal testing requirements. The benefit of focus on body modes (a) drastically reduces the number of modes for IV&V and (b) eliminates the need to identify highly sensitive shell breathing modes.

3. **Selection of Core Stage Vehicle Target Modes.** Selection of core stage vehicle target modes becomes an effective, systematic process when modes are categorized on the basis of class (lateral, axial, torsion, shell breathing, localized appendage, etc.) by evaluation of subassembly kinetic and strain energy distributions, directional kinetic and strain energy distributions, and modal effective mass.

4. **Extend the Empty Core Stage Modal Frequency Band.** By tracking the anticipated natural frequencies of fully fueled and corresponding empty core vehicle stage body modes, the frequency band of target modes expands from 0-50 Hz to 0-170 Hz (TBR). The extended frequency band offers an acceptable level of assurance that target modes will exercise structural deformations that relate to vehicle system dynamics for the spectrum of flight times (propellant fill levels) within the 0-50 Hz frequency band.
5. Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell). The response of shell breathing modes may not be totally suppressed by orienting applied excitation loads tangential to the shell surface (a common practice). Therefore, accelerometer allocation must be sufficient to separate body modes from breathing modes; placement of tri-axial accelerometers 90 degrees apart around the core shell circumference (TBR) may suffice for satisfaction of standard NASA criteria. Additional accelerometers (or alternative strain gage sensors) are recommended to at least separate shell breathing modes from body modes.

6. Instrumentation Requirements for Core Vehicle Stage Appendages. Pitch, yaw, roll and axial dynamics of the four engine bells must be appropriately instrumented to discern localized motions, which may couple with overall body dynamics (lateral, axial, torsion) of the shell subassembly. An appropriate accelerometer array to capture LOX feedline structural dynamics in the frequency band of the modal test must also be allocated. Past experience indicates that apparent multiple or repeated body modes need to be mapped with local appendage accelerometers in order to (a) understand and separate apparently repeated mode families while (b) satisfying test mode orthogonality criteria.

7. Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V. At the present time, the SLS contractor’s parameterized variations on core vehicle stage modes are intended as specific, fixed candidates for correlation with modal test data. The modal sensitivity formulation introduced in 2002 and further refined in 2013 provides the means to efficiently conduct concurrent sensitivity and test-analysis correlation (and with “luck”, optimal reconciliation) evaluations.

8. The present report offers a first-cut set of recommendations by the writer. Further Loads and Dynamics TDT discussions and additional SLS program information will certainly lead to expansion and refinement of recommendations.
Introduction

Review of NESC-RP-14-00946 indicates the following consensus:

1. System models will be assembled employing Hurty-Craig-Bampton (HCB) components (which are commonly called modal substructures or superelements).
2. Full-scale modal tests will be planned to map modes to about 50 Hz.
3. Core vehicle stage modal tests will be conducted with empty propellant tanks.
4. Employment of orthogonality, cross-orthogonality & frequency correlation criteria are expected to be very challenging.

There appears to be a lack of consensus on the general approach to core vehicle modal testing, specifically:

5. Should all modes or some target modes below 50 Hz (TBR) be mapped in modal tests?
6. Is pressurization important in modal testing?
7. Definition of an appropriate instrumentation array is highly dependent on (5 & 6),

Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core stage mathematical models, which differ from one-another in parametrically sensitized zones. Those specific zones are sensitized by variation of basic material properties (e.g. elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both naïve and physically unrealistic. A more appropriate strategy for parametric sensitivity focuses on uncertainty at interconnecting joints (especially between substructures and subassemblies). In order to enable exercise of joint sensitivities, interfaces must include sufficiently realistic features to include those sensitivities.

It appears prudent to review the intent of IV&V from the viewpoints of separate engineering sub-disciplines, namely (a) flight structural loads, (b) control stability, (c) pogo stability, and (d) aeroelasticity. Each of these sub-disciplines requires differing subsets of modal information to conduct reliable engineering evaluations. It is noteworthy to recall that the past 60 years of space launch experience has generally succeeded while employing less sophisticated dynamic models than those envisioned in the present endeavor.

Relevant Structural Dynamic Models

The dynamic frequency band \(0 \leq f \leq f^*\) for a relevant structural dynamic model (assumed linear for the present) is governed by the SRS of its anticipated loading environments (Ref 1). Based on \(f^*\) (typically 50 Hz), minimum grid spacing of structural components may be defined; however, employment of modern CAE tools generally produces refined finite element models that exceed minimum grid spacing requirements. It should be noted that strict adherence to engineering drawings (as emphasized in of NESC-RP-14-00946), while avoiding ill-advised modeling liberties (often employing RBE2 & RBE3 constraints) minimizes the occurrence of severe modeling deficiencies.
A common deficiency in modern structural dynamic models is the result of naïve oversimplification of interconnecting joints between structural components and subassemblies. It is all too easy to simply “join” parts without provision for local flexibilities (e.g., riveted, bolted and welded connections). This lack of essential parametric flexibility commonly leads to unrealistic model adjustments that vary a component’s elastic modulus in order to meet IV&V goals. Incorporation of “right-sized” model sophistication at joints has produced satisfying results in recent projects.

The core vehicle stage presents a particular challenge for IV&V in that (a) its primary structure is a shell (with many shell breathing modes within the band of classically significant body modes), (b) propellant constitutes the majority of the system’s mass when it is fully loaded, and (c) core stage modal testing will be limited to the empty condition. Classical shell theory (Ref 2) and laboratory experience (Ref 3) indicate that shell breathing modes are sensitive to static pressure and weight loading as well as flexural stiffness of shell segment transitions and boundary conditions. The body modes, however, are relatively insensitive to static pressure and weight loading (the exceptional case occurs for balloon-type propellant tanks typical of earlier Atlas and Centaur vehicles). In addition, theoretical analyses (Ref 4) and past launch vehicle experiences strongly indicate that structural loads and system dynamics are primarily influenced by “body” modes (axial, lateral, torsion). While modern finite element models include all body and breathing modes of shell structures, it is highly recommended that the core stage vehicle IV&V process should focus on body modes only.

Focus on Core Vehicle Stage Target Modes

There are differing opinions on IV&V for the core vehicle stage:

1. One opinion suggests that mapping of virtually all modes in a selected frequency band (e.g., 0≤f≤50 Hz) be measured and validated using standard criteria (Ref 5). This approach incurs a severe instrumentation penalty to map all circumferential harmonic breathing modes in the selected frequency band.
2. An alternative opinion (the writer’s) suggests mapping of body modes that are relevant to IV&V of core vehicle stage dynamics (for all propellant loading conditions) in the 0≤f≤50 Hz frequency band.

Adoption of the alternative opinion requires some rethinking of core vehicle modal testing requirements.

Selection of Core Vehicle Stage IV&V Target Body Modes

The theoretical modes of a fixed-base core stage dynamic model with selected propellant fill levels may be categorized in terms of (a) sub-component kinetic and strain energy distributions, (b) directional kinetic and strain energy distributions, and (c) modal effective mass (Ref 4). Prominent body modes are readily identified by employing the above cited energy and modal effective mass metrics. Tracking of the frequency
migration of important body modes with decreasing propellant levels (using cross-orthogonality or modal assurance criteria (MAC)) will indicate which set of empty body modes should be included in the target mode set.

A very preliminary estimate of the target body mode frequency band results from the ratio of fully loaded (~2,159,000 lb) to empty (~188,000 lb) weights. The ratios of natural frequencies for corresponding empty and fully loaded system body modes are on the order of 3.4 (square root of 11.5). This increases the frequency band for empty core stage target modes from 50 Hz to about 170 Hz (TBR). A more refined estimate of the frequency range of core stage target modes for IV&V must be the result of rigorous core stage vehicle (mathematical model) modal tracking. It should be noted that the only type of body mode that should not be affected by fuel mass loading is torsion, since no propellant mass should be moved during pure torsion activity.

A relatively simple example shell structure (taken from Ref 4) illustrates how target modes may roughly scale with respect to fuel level. The original model consists of a 20" radius, 100" long, 0.5" wall thickness aluminum shell and skirt assembly composed of five (5) subassemblies, as illustrated below in Figure 1.

![Illustrative Example Shell Structure](image)

In order to "up-scale" this example from 20" radius (40" diameter) to SLS scale, which is (27' diameter), the empty shell frequencies will reduce by a length factor of 8.1. The empty full-scale frequencies are subsequently scaled by a reduction factor of 3.4 (corresponding to the SLS "weight factor"); torsion modes are not subjected to the mass factor. Results of this process are summarized below in Table 1.
Table 1: Illustrative Example Base-Fixed Body Modes (with scaling)

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Component Kinetic Energy (%)</th>
<th>Directional Kinetic Energy (%)</th>
<th>Modal Effective Mass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty</td>
<td></td>
<td>Full Scale</td>
<td>100% Fueled</td>
</tr>
<tr>
<td></td>
<td>1/8.1 Scale</td>
<td>SKIRT, DOME1</td>
<td>SHELL, DOME2</td>
</tr>
<tr>
<td></td>
<td>X Y Z</td>
<td>X Y Z RX RY RZ</td>
<td>X Y Z RX RY RZ</td>
</tr>
<tr>
<td>1Y</td>
<td>122.21</td>
<td>4.44</td>
<td>0.0 96.2 3.8</td>
</tr>
<tr>
<td>2Y</td>
<td>122.21</td>
<td>4.44</td>
<td>0.0 96.2 3.8</td>
</tr>
<tr>
<td>3Y</td>
<td>376.86</td>
<td>38.92</td>
<td>0.0 91.0 8.9</td>
</tr>
<tr>
<td>4Y</td>
<td>377.59</td>
<td>46.57</td>
<td>0.0 89.9 9.6</td>
</tr>
<tr>
<td>5Y</td>
<td>469.44</td>
<td>57.75</td>
<td>0.0 82.1 8.9</td>
</tr>
<tr>
<td>6Y</td>
<td>470.12</td>
<td>58.75</td>
<td>0.0 82.1 8.9</td>
</tr>
<tr>
<td>7Y</td>
<td>470.12</td>
<td>58.75</td>
<td>0.0 82.1 8.9</td>
</tr>
<tr>
<td>8Y</td>
<td>470.12</td>
<td>58.75</td>
<td>0.0 82.1 8.9</td>
</tr>
<tr>
<td>9Y</td>
<td>470.12</td>
<td>58.75</td>
<td>0.0 82.1 8.9</td>
</tr>
<tr>
<td>10Y</td>
<td>470.12</td>
<td>58.75</td>
<td>0.0 82.1 8.9</td>
</tr>
</tbody>
</table>

The mode numbers in the first column are associated with 14 body modes out of a total of 100 modes (all modes that are not listed are associated with shell breathing). The letter after each body mode number designates the body mode type (Y, X represent lateral bending, T represents torsion, and Z represents axial). Plots of four body modes are illustrated below in Figure 2.

Figure 2: Illustrative Example Body Modes

Note that modes 24Z and 86Z may be significant for a hypothetical Pogo stability evaluation. Based on examination of the frequency shifts in lateral and axial body modes, it is clear that empty structure body modes in the 0≤f≤50 Hz frequency band are not representative of important fuel-loaded body modes in the same frequency band.

The illustrative example shell structure offers rationale for (a) selection of target IV&V modes, and (b) expansion of the modal test frequency band to include significant hydroelastic modes. In addition, elimination of shell breathing modes from the target mode set, simplifies prospects for satisfaction of test-analysis correlation goals (Ref 5).
Instrumentation Requirements for Core Vehicle Stage Modal Testing (the Shell)

The response of shell breathing modes may not be totally suppressed by orienting applied excitation loads tangential to the shell surface (a common practice). Therefore, accelerometer allocation must be sufficient to separate body modes from breathing modes. A recently published paper (Ref 6) introduces an extended RKE strategy for allocation of accelerometers and development of a TAM mass matrix for orthogonality and cross-orthogonality calculations (to satisfy Ref 5 standards). However, additional accelerometers (or alternative strain gage sensors) are recommended to at least separate shell breathing modes from body modes. An array of the type illustrated below in Figure 3 provides a way forward for effecting separation of shell breathing and body modes.

![Figure 3: Accelerometer Array for Illustrative Example Shell Structure](image)

The tri-axial accelerometer locations denoted by red circles (90 degree circumferential separation) correspond to the allocation deemed prudent for mapping of body modes (employing an opportune reduction transformation for body modes). The additional blue point tri-axial accelerometer (or NASA AFRC type fiber optic strain string) bands correspond to additional arrays, which are intended to identify the presence of shell breathing modes (to be eliminated from the measured target mode set).

Instrumentation Requirements for Core Vehicle Stage Appendages

On the assumption that the propellant tank and intertank subassemblies will be instrumented following the above recommendations, there are additional practical matters that should be addressed related to appendages (e.g., engines, long LOX feedline). General construction of the core vehicle stage is illustrated below in Figure 4.
Pitch, yaw, roll and axial dynamics of the four engine bells must be appropriately instrumented to discern localized motions, which may couple with overall body dynamics (lateral, axial, torsion) of the shell subassembly. In addition, the long LOX feedline (empty) may be subject to localized flexural and axial dynamics that couple with the shell subassembly. An appropriate accelerometer array to capture LOX feedline structural dynamics in the frequency band of the modal test must be allocated. Past experience (e.g., automobile modal testing, Ref 7) has indicated that apparent multiple or repeated body modes need to be mapped with local appendage accelerometers in order to (a) understand and separate apparently repeated modes families while (b) satisfying test mode orthogonality criteria.

Core Vehicle Stage Sensitivity and Reconciliation Analysis for IV&V

Conversations with Dr. Alvar Kabe indicate that the SLS contractor is building core stage mathematical models, which differ from one-another in parametrically sensitized zones. Those specific zones are sensitized by variation of basic material properties (e.g. elastic modulus). This commonly employed approach is (in this reviewer’s opinion) both naïve and physically unrealistic. A more appropriate strategy for parametric sensitivity focuses on uncertainty at interconnecting joints (especially between substructures and subassemblies). In order to enable exercise of joint sensitivities, interfaces must include realistic enough features to include those sensitivities.

At the present time, the SLS contractor’s parameterized variations on Core Vehicle Stage modes are intended as specific candidates for correlation with modal test data. The modal sensitivity formulation introduced in 2002 (Ref 8-9) and further refined in 2013 (Ref 10) provides the means to efficiently conduct concurrent sensitivity and test-analysis correlation (and with “luck”, optimal reconciliation) evaluations.
The key to the sensitivity formulation is the collection of baseline model and individual parametric variants (finite change in regions of a system, e.g., group of joints), as described by the sensitized dynamic equation set,

\[
\begin{align*}
[M_0 + \sum_{i=1}^{N} \rho_i \cdot \Delta M_i]\{\ddot{u}\} + \left[K_0 + \sum_{i=1}^{N} \rho_i \cdot \Delta K_i\right]\{u\} &= \{0\}
\end{align*}
\]

(1)

When all \(\rho_i\) are null, the system is “baseline”. The low frequency undamped modes of the baseline system are solutions of the eigenvalue problem

\[
[K_O \Phi_{0L}] - [M_O \Phi_{0L}] \lambda_{0L} = \{0\}
\]

(2)

Definition of residual vectors describing parametric variations in Equation 1 is accomplished utilizing the lowest frequency mode shapes of the baseline structure as well as the lowest mode shapes associated with each independent alteration of the structure

\[
[K_O + \bar{\rho}_i \Delta K_i \Phi_{iL}] - [M_O + \bar{\rho}_i \Delta M_i \Phi_{iL}] \lambda_{iL} = \{0\} \quad \text{for} \ i=1,\ldots,N,
\]

(3)

where \(\bar{\rho}_i\) is a finite (rather than infinitesimal parametric perturbation). An initial set of trial vectors that redundantly encompass all low frequency altered system mode shapes is

\[
[\Psi] = [\Phi_{1L} \quad \Phi_{2L} \ldots \quad \Phi_{NL}]
\]

(4)

The redundant set of trial vectors is reduced to a linearly independent “modal” set, \([\Phi_{OL}]\), by following the methodology described in Ref 9. \([\Phi_{OL}] = [\Phi_{OL} \quad \Psi_{\rho}]\) is the trial vector set (sensitivity vectors) to be used for expansion of measured operating deflection shapes.

It is of interest to note that the resulting approximate generalized sensitivity model (that may be employed in a more complete system identification exercise) is

\[
\begin{align*}
[k_O + \sum_{i=1}^{N} \rho_i [\Delta k_i]]\{\ddot{\varphi}\} - [m_O + \sum_{i=1}^{N} \rho_i [\Delta m_i]]\{\varphi\} \lambda &= \{0\},
\end{align*}
\]

(5)

where the reduced stiffness and mass matrix components are

\[
[k_O] = [\Phi_{OL}^T K_O \Phi_{OL}], \quad [m_O] = [\Phi_{OL}^T M_O \Phi_{OL}], \quad [\Delta k_i] = [\Phi_{OL}^T \Delta K_i \Phi_{OL}], \quad [\Delta m_i] = [\Phi_{OL}^T \Delta M_i \Phi_{OL}]
\]

(6)

The low frequency physical modes for the altered dynamic system are recovered using the relationship

\[
[\Phi_{iL}] = [\Phi_{OL}]\{\varphi\}
\]

(7)
Further operations, successfully employed in modal tests (e.g., Ref 7) have resulted in post-test system models (with specific parameter values) that closely agree with modal test data.

References

Appendix C: Evaluation of ISPE Model Sensitivities
Sensitivity Road Map

<table>
<thead>
<tr>
<th>Element</th>
<th>Subcomponent Perturbed</th>
<th>Run #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Run</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MSA</td>
<td>Barrel Region</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Flange Material</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Weldlands</td>
<td>4</td>
</tr>
<tr>
<td>LVSA</td>
<td>All Barrel Region</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>FWD Barrell Region</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Weldlands</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>AFR Ring</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>FWD Ring</td>
<td>9</td>
</tr>
<tr>
<td>ICPS</td>
<td>Lox Tank Lower dome</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Lox Tank Middle</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Lox Tank Upper Dome</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>LH2 Tank Lower dome</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>LH2 Tank Middle</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>LH2 Tank Upper Dome</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Struts</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>SPIKE Box</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Ll2 tank Forward skirt</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Intertank Forward skirt</td>
<td>19</td>
</tr>
<tr>
<td>Sure Sep</td>
<td>Sure Sep</td>
<td>21</td>
</tr>
<tr>
<td>Core Simulator</td>
<td>Barrel</td>
<td>22</td>
</tr>
<tr>
<td>MPCV Simulator</td>
<td>Weldlands</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Barrel</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Interface Rings</td>
<td>25</td>
</tr>
<tr>
<td>Integration</td>
<td>MPCV Sim to LVSA</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>MSA to ICPS</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Core Sim to Ground</td>
<td>29</td>
</tr>
</tbody>
</table>

Negligible Sensitivity
Discrimination of Sensitive and Insensitive Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>DP (%)</th>
<th>100 Cor (%)</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2c.m.</td>
<td>4</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1.3c.m.</td>
<td>5</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1.4c.m.</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1.5c.m.</td>
<td>13</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>1.6c.m.</td>
<td>13</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1.7c.m.</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1.8c.m.</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.9c.m.</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.10c.m.</td>
<td>0</td>
<td>0</td>
<td>Insensitive</td>
</tr>
<tr>
<td>1.11c.m.</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.12c.m.</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.13c.m.</td>
<td>2</td>
<td>81</td>
<td>Sensitive</td>
</tr>
<tr>
<td>1.14c.m.</td>
<td>4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>1.15c.m.</td>
<td>0</td>
<td>0</td>
<td>Insensitive</td>
</tr>
<tr>
<td>1.16c.m.</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.17c.m.</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.18c.m.</td>
<td>28</td>
<td>95</td>
<td>Sensitive</td>
</tr>
<tr>
<td>1.19c.m.</td>
<td>1</td>
<td>6</td>
<td>Insensitive</td>
</tr>
<tr>
<td>1.20c.m.</td>
<td>5</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>1.21c.m.</td>
<td>8</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>1.22c.m.</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1.23c.m.</td>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.24c.m.</td>
<td>15</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.25c.m.</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.26c.m.</td>
<td>28</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1.27c.m.</td>
<td>0</td>
<td>0</td>
<td>Insensitive</td>
</tr>
<tr>
<td>1.28c.m.</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.29c.m.</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.30c.m.</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Efficient Modal Sensitivity Convergence

- Exact system modes (for each reference parameter value, p_i)
 \[
 \left[K_0 + \sum_i p_i \Delta K_i\right][\Phi_e] = \left[M_0 + \sum_i p_i \Delta M_i\right][\Phi_e][\lambda_e]
 \]

- Approximate system modes (for a selected value of “tol”)
 \[
 \left[k_0 + \sum_i p_i \Delta k_i\right][\varphi_a] = \left[m_0 + \sum_i p_i \Delta m_i\right][\varphi_a][\lambda_a]
 \]
 \[
 [\Phi_a] = [\Psi][\varphi_a]
 \]

- Convergence indicator
 \[
 [C_{ea}] = [\Phi_e^T M_0 \Phi_a]
 \]
 - If cross-orthogonality is not close to $[I_o]$ for all cases, reduce “tol” until this criterion is satisfied (modal frequencies will converge when this is met)
Efficient Modal Sensitivity Convergence Results

<table>
<thead>
<tr>
<th>Case</th>
<th>1.0E-04</th>
<th>1.0E-05</th>
<th>1.0E-06</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuals:</td>
<td>45</td>
<td>160</td>
<td>291</td>
</tr>
<tr>
<td>Tolerance</td>
<td>(\Delta f) (%)</td>
<td>(\Delta \phi) (%)</td>
<td></td>
</tr>
<tr>
<td>1.2c.mat</td>
<td>1.5</td>
<td>11</td>
<td>1.2</td>
</tr>
<tr>
<td>1.3c.mat</td>
<td>2.3</td>
<td>16</td>
<td>1.9</td>
</tr>
<tr>
<td>1.4c.mat</td>
<td>3.2</td>
<td>33</td>
<td>1.6</td>
</tr>
<tr>
<td>1.5c.mat</td>
<td>1.0</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>1.6c.mat</td>
<td>1.3</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>1.7c.mat</td>
<td>0.4</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>1.13c.mat</td>
<td>0.3</td>
<td>12</td>
<td>0.1</td>
</tr>
<tr>
<td>1.14c.mat</td>
<td>2.5</td>
<td>16</td>
<td>0.6</td>
</tr>
<tr>
<td>1.15c.mat</td>
<td>0.7</td>
<td>19</td>
<td>0.1</td>
</tr>
<tr>
<td>1.20c.mat</td>
<td>3.0</td>
<td>20</td>
<td>1.4</td>
</tr>
<tr>
<td>1.21c.mat</td>
<td>0.7</td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>1.22c.mat</td>
<td>0.4</td>
<td>7</td>
<td>0.2</td>
</tr>
<tr>
<td>1.23c.mat</td>
<td>1.0</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>1.24c.mat</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>1.25c.mat</td>
<td>1.7</td>
<td>99</td>
<td>0.6</td>
</tr>
<tr>
<td>1.26c.mat</td>
<td>0.9</td>
<td>5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Notes:
1. \(\Delta f\) (%) = \([\text{approximate} - \text{exact frequency}] / [\text{exact frequency}]\) (%)
2. \(\Delta \phi\) (%) = 100% - [Cross-Orthogonality] (%)
File: Allsens1e-4: Convergence Summary
File: Allsens1e-4: Convergence Cross-Orthogonality
Baseline File: 1.1c.mat, Perturbed File: 1.3c.mat, tol=0.0001
Baseline File: 1.1c.mat, Perturbed File: 1.5c.mat, tol=0.0001
Baseline File: 1.1.mat, Perturbed File: 1.14.mat, tol=0.0001
Baseline File: 1.1c.mat, Perturbed File: 1.20c.mat, tol=0.0001
Baseline File: 1.tcl.mat, Perturbed File: 1.2tcl.mat, tol=0.0001
Baseline File: 1.1.mat, Perturbed File: 1.2.mat, tol=0.0001
Baseline File: 1.1c.mat, Perturbed File: 1.24c.mat, tol=0.0001
Baseline File: 1.1c.mat, Perturbed File: 1.26c.mat, tol=0.0001
File: Allsens1e-5: Convergence Summary
File: Allsens1e-5: Convergence Cross-Orthogonality
Baseline File: 11c.mat, Perturbed File: 14c.mat, tol=1e-005
Baseline File 1.1e-001, Perturbed File 1.7e-001, tol=1e-006
Baseline File: 1.1.mat, Perturbed File: 1.20.mat, tol=1e-005
Baseline File: 1.1c.mat, Perturbed File: 1.30c.mat, tol=1e-036
File: Allsens1e-6: Convergence Summary
File: Allsens1e-6: Convergence Cross-Orthogonality
Baseline File: 1.1c.mat, Perturbed File: 1.5c.mat, tol=1e-06
Baseline File: 1.1c.mat, Perturbed File: 1.1b.mat, tol=1e-06
Baseline File: 1.1c.mat, Perturbed File: 1.24c.mat, tol=1e-005
Baseline File: 1.1c.mat, Perturbed File: 1.2b.mat, tol=1e-006
Appendix D: Consolidation of Body Modes for an “Axisymmetric” Shell Structure

Robert N. Coppolino
Measurement Analysis Corporation
11 July 2017
Introduction and Summary

- It is anticipated that the SLS Core Vehicle will have a high number of modes (on the order of 2000) over the 0-50 Hz frequency band. Many anticipated modes are of shell breathing character (which are sensitive to tank pressurization associated with fluid inertia and ullage). A smaller subset of modes are characterized by overall body deformation (e.g., bending, axial stretch, torsion, and n=0 bulge). Slight asymmetries and imperfections may cause some modes to be of mixed body and shell breathing character.
- A variety of modal quantities are examined to assist in interpretation of system modes and select a “target mode” subset, namely (a) directional kinetic energy, (b) “body” and “breathing” kinetic energies.
- “Body” dominant modes (which contain “breathing” components due to slight asymmetries and imperfections) may form modal clusters containing repeated body deflection patterns.
- Estimation of consolidated “pure body” modes of a corresponding perfectly axisymmetric structure is accomplished by employing SVD on body mode cluster generalized masses and system mode frequencies.
Introduction and Summary (cont’d)

• While the present report serves the purpose of describing the mode consolidation process, it does not formally advocate how the concept is to be applied. Therefore, at this time it is anticipated that mode consolidation may be employed as back-up/new capability that is potentially useful in upcoming SLS modal tests.

• That being said, some preliminary thoughts on mode consolidation are provided in the next slide.
Potential Application of Mode Consolidation
(a parallel process augmenting the conventional strategy)

Modal Test Planning (RKE, IRKE, etc.)

Modal Test (system modes for 0<f<f*)

Develop efficient sensitivity model (augmentation via residual vectors)

Approximate FEM body modes (via generalized Guyan reduction*)

Correlation & Reconciliation (FEM vs. system modes)

Test mode consolidation (form a test body mode set)

FEM & test mode consolidation (classify via body & breathing KE’s)

Correlation & Reconciliation (consolidated system modes)

* An efficient generalized Guyan reduction sensitivity method has been defined, to be discussed in a subsequent report.
Illustrative Example: Segmented Shell Model
(fixed base at the lower skirt bottom)
Body Displacement Pattern Shape Functions
(for each “Z” station)

7th shape is radial bulge
Body Displacement Pattern Shape Functions
(separation of “body” and “breathing” modal patterns)

- Basic relationship
 \[[\Phi_L] = [\Psi_b][\varphi_b] + [\Phi_r] \]

- Least-squares analysis
 \[[\Psi_b^T M \Phi_L] = [\Psi_b^T M \Psi_b][\varphi_b] + [\Psi_b^T M \Phi_r] \]
 \[[\varphi_b] = [\Psi_b^T M \Psi_b]^{-1}[\Psi_b^T M \Phi_L] \]

- Modal pattern decomposition
 \[[\Phi_b] = [\Psi_b][\varphi_b] , \quad [\Phi_r] = [\Phi_L] - [\Phi_b] \]
 \[[\Phi_L] = [\Phi_b] + [\Phi_r] \]
Body Displacement Pattern Shape Functions
(separation of “body” and “breathing” modal patterns)

• Modal kinetic energies

\[
[M\Phi] \otimes [\Phi] = [M\Phi_b] \otimes [\Phi_b] + [M\Phi_r] \otimes [\Phi_r]
\]

“total KE” “body KE” “breathing KE”

• Also….

\[
[\Phi_L^T M\Phi_L] = [I_L] = [\Phi_b^T M\Phi_b] + [\Phi_r^T M\Phi_r]
\]

• Note: The “body” and “breathing” contributions are independent since the two groups are orthogonal to each other.
Overview of Body & Breathing Mode Kinetic Energies (for the baseline, axisymmetric structure)
Overview of Body Mode Kinetic Energies
(for the baseline axisymmetric structure)
Typical Body Modes
(for the baseline, axisymmetric structure)

Mode 1, Freq = 122.2 Hz
Mode 11, Freq = 315.24 Hz
Mode 24, Freq = 497.77 Hz
Mode 146, Freq = 1440.38 Hz

Lateral Y Torsion Axial Bulge
Typical Breathing Modes
(for the baseline, axisymmetric structure)

Mode 2, Freq = 176.086 Hz
Mode 5, Freq = 107.659 Hz
Mode 7, Freq = 241.072 Hz

n = 3 n = 4 n = 2
Overview of Body & Breathing Mode Kinetic Energies
(for the perturbed*, axisymmetric structure)

* Finite mass perturbation introduced along the “X=0” line of grid points.
Overview of Body Mode Kinetic Energies
(for the perturbed axisymmetric structure)
Typical Mixed Body & Breathing Modes (for the perturbed, axisymmetric structure)

Mode 14, Freq = 373.9 Hz

Mode 15, Freq = 374.65 Hz

Mode 16, Freq = 375.36 Hz

Mode 17, Freq = 377.43 Hz

\([KEB,KER] = [90,10]\)

\([84,16]\)

\([5,95]\)

\([3,97]\)
Typical Mixed Body & Breathing Modes
(for the perturbed, axisymmetric structure)
Mode Consolidation Theory

(mode segmentation using shape matrix, \([\Psi_b]\))

\[
[\Phi_L] = [\Psi_b][\Phi_b] + [\Phi_r] \quad \text{(body, “b”, and breathing, “r”, segments)}
\]

\[
[\Psi^T_b M \Phi_L] = [\Psi^T_b M \Psi_b][\Phi_b] + [\Psi^T_b M \Phi_r] \quad \iff \quad [\Phi_b] = [\Psi^T_b M \Psi_b]^{-1}[\Psi^T_b M \Phi_L]
\]

\[
[\Phi_L] = [\Phi_b] + [\Phi_r], \quad [\Phi_b] = [\Psi_b][\Phi_b], \quad [\Phi_r] = [\Phi_L] - [\Phi_b]
\]

\[
[\Phi^T_b M \Phi_b] = [\mathbf{O}_b] = [m_b], \quad [\Phi^T_r M \Phi_r] = [\mathbf{O}_r] = [m_r], \quad [\Phi^T_b M \Phi_r] = [0]
\]

segmented (partial) modal kinetic energies

\[
(KE_L)_i = (KE_b)_i + (KE_r)_i = 1, \quad (KE_b)_i = (m_b)_{ii}, \quad (KE_r)_i = (m_r)_{ii}
\]
Mode Consolidation Theory
(motivational facts)

\[
[K][\Phi] = [M][\Phi][\lambda] \quad \text{(eigenvalue problem)}
\]

\[
[OR] = [m] = [\Phi^T M \Phi] = [I] \quad [k] = [\Phi^T K \Phi] = [\lambda]
\]

- The orthogonality matrix is the sum of “body” and “breathing” components

\[
[OR] = [m] = [m_b] + [m_r]
\]

- The “experimental” generalized stiffness matrix cannot be segmented
 - \([K]\) is unknown, but \([k] = [\lambda]\), which is experimentally “known”
 - therefore, a strategy based on \([m_b]\) and \([\lambda]\) is required
Mode Consolidation Theory
("body" mode segment cluster consolidation via SVD)

\[
\begin{bmatrix}
m_b \\
\tilde{\nu}_b
\end{bmatrix} = \begin{bmatrix}
\tilde{\nu}_b \\
\gamma_b
\end{bmatrix}
\quad \gamma_{b,1} \geq \gamma_{b,2} \geq \gamma_{b,3}, \ldots
\]

\[
\begin{bmatrix}
\tilde{\nu}_b^T \tilde{\nu}_b \\
\end{bmatrix} = [I] \quad \tilde{\nu}_b^T m_b \tilde{\nu}_b = [\gamma_b]
\]

Criterion for eigenvalue cut-off, \(\gamma_{b,i} / \gamma_{b,1} \geq \text{tol}\)

eigenvector rescaling

\[
\begin{bmatrix}
\nu_b
\end{bmatrix} = \begin{bmatrix}
\tilde{\nu}_b \\
\gamma_b
\end{bmatrix}^{1/2}
\]

\[
\begin{bmatrix}
\nu_b^T \nu_b \\
\end{bmatrix} = [\gamma_b] \quad [m_b] = [\nu_b] [\nu_b^T]
\]

(Convenient step for KE based mode consolidation)
Mode Consolidation Theory
("body" mode segment cluster consolidation via SVD)

consolidated modal frequencies as Rayleigh quotients

\[
\lambda_{b,i} = \frac{\{\nu_{b,i}\}^T \{\lambda\} \{\nu_{b,i}\}}{\{\nu_{b,i}\}^T \{\nu_{b,i}\}} \quad \Rightarrow \quad f_{b,i} = \frac{\sqrt{\lambda_{b,i}}}{2\pi}
\]

consolidated body modes via SVD transformation

\[
\begin{bmatrix}
\tilde{\Phi}_c \\
\end{bmatrix} = \begin{bmatrix}
\Phi_b \\
\nu_b
\end{bmatrix} \quad m_{c,i} = \{\Phi_{c,i}\}^T \{M\} \{\Phi_{c,i}\} \\
\{\Phi_{c,i}\} = \{\tilde{\Phi}_{c,i}\} / \sqrt{m_{c,i}} \quad \begin{bmatrix}
\Phi_c^T M \Phi_c
\end{bmatrix} = [I]
\]

Body Mode Cluster Selection Criteria
(KE_B ≥ 10%, |OR_{ij}| ≥ 10%)

Body Mode Cluster Selection Criteria (KEB>=10%, |ORij|>=10%)

Body KE (%)

0 50 100

Mode

|ORij (%)|

0 50 100

Mode
Orthogonality of Body Mode Clusters
(normalized body modes indicating “repeated” body modes)
Overview of Body Mode Clusters
(non-normalized body mode KE, selected modes 1-22)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120.57</td>
<td>96</td>
<td>2</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>121.13</td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>315.43</td>
<td>98</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>92</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>359.84</td>
<td>5</td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>367.98</td>
<td>7</td>
<td>25</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>373.67</td>
<td>50</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>374.65</td>
<td>84</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>375.36</td>
<td>5</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>377.43</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>493.45</td>
<td>98</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>598.29</td>
<td>61</td>
<td>46</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>701.56</td>
<td>98</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>700.21</td>
<td>35</td>
<td>45</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>833.52</td>
<td>91</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>839.13</td>
<td>7</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>967.62</td>
<td>50</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>968.08</td>
<td>36</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>992.77</td>
<td>19</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>994.38</td>
<td>81</td>
<td>39</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>1003.31</td>
<td>10</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>1017.37</td>
<td>12</td>
<td>31</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1020.36</td>
<td>84</td>
<td>31</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

(There are eight selected clusters to analyze)
Overview of Body Mode Clusters
(non-normalized body mode KE, selected modes 23-49)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Freq (Hz)</th>
<th>Body Mode Orthogonality Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>1148.95</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 2</td>
<td>1148.72</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 3</td>
<td>1148.16</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 4</td>
<td>1148.07</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 5</td>
<td>1148.54</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 6</td>
<td>1148.18</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 7</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 8</td>
<td>1148.59</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 9</td>
<td>1148.29</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 10</td>
<td>1148.13</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 11</td>
<td>1148.53</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 12</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 13</td>
<td>1148.51</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 14</td>
<td>1148.83</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 15</td>
<td>1148.11</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 16</td>
<td>1148.26</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 17</td>
<td>1148.43</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 18</td>
<td>1148.84</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 19</td>
<td>1148.30</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 20</td>
<td>1148.51</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 21</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 22</td>
<td>1148.53</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 23</td>
<td>1148.83</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 24</td>
<td>1148.11</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 25</td>
<td>1148.26</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 26</td>
<td>1148.43</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 27</td>
<td>1148.84</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 28</td>
<td>1148.30</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 29</td>
<td>1148.51</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 30</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 31</td>
<td>1148.53</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 32</td>
<td>1148.83</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 33</td>
<td>1148.11</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 34</td>
<td>1148.26</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 35</td>
<td>1148.43</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 36</td>
<td>1148.84</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 37</td>
<td>1148.30</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 38</td>
<td>1148.51</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 39</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 40</td>
<td>1148.53</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 41</td>
<td>1148.83</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 42</td>
<td>1148.11</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 43</td>
<td>1148.26</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 44</td>
<td>1148.43</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 45</td>
<td>1148.84</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 46</td>
<td>1148.30</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 47</td>
<td>1148.51</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 48</td>
<td>1148.47</td>
<td>82.96</td>
</tr>
<tr>
<td>Mode 49</td>
<td>1148.53</td>
<td>82.96</td>
</tr>
</tbody>
</table>

(There are eight selected clusters to analyze)
Overview of Body Mode Clusters
(non-normalized body mode KE)
Mode Consolidation Theory
(process summary for each modal cluster)

1. Mode segmentation
 - $[\Phi_L] = [\Phi_b] + [\Phi_r]$

2. Identify distinct “body” mode clusters

3. Consolidate “body” mode clusters
 - SVD process results in $[\Phi_c]$, $[\lambda_c]$ for successive clusters

Requires judgment and intuition with experimental modal data
Cluster Analysis
Cluster Analysis
Consolidated Body Mode Orthogonality

<table>
<thead>
<tr>
<th>Mode</th>
<th>Note (Hz)</th>
<th>Orthogonality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120.97</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>121.13</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>312.43</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>372.36</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>374.14</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>483.45</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>490.42</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>703.56</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>632.71</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>693.97</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>994.07</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>1020.02</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>1149.62</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>1166.38</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>1210.00</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>1219.50</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>1260.93</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>1538.92</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>1737.75</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>1381.47</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>1387.15</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>1415.07</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>1426.32</td>
<td>100</td>
</tr>
</tbody>
</table>
Consolidated Body Mode Orthogonality
Cross-Orthogonality

(*Body Mode Clusters vs. Consolidated Body Modes*)
Cross-Orthogonality

Consolidated Body Modes vs. Baseline Body Modes

| Modes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|-------|
| 1 | 125 | 29 | 0 |
| 2 | 123 | 29 | 0 |
| 3 | 122 | 29 | 0 |
| 4 | 121 | 29 | 0 |
| 5 | 120 | 29 | 0 |
| 6 | 119 | 29 | 0 |
| 7 | 118 | 29 | 0 |
| 8 | 117 | 29 | 0 |
| 9 | 116 | 29 | 0 |
| 10 | 115 | 29 | 0 |
| 11 | 114 | 29 | 0 |
| 12 | 113 | 29 | 0 |
| 13 | 112 | 29 | 0 |
| 14 | 111 | 29 | 0 |
| 15 | 110 | 29 | 0 |
| 16 | 109 | 29 | 0 |
| 17 | 108 | 29 | 0 |
| 18 | 107 | 29 | 0 |
| 19 | 106 | 29 | 0 |
| 20 | 105 | 29 | 0 |
| 21 | 104 | 29 | 0 |
| 22 | 103 | 29 | 0 |
| 23 | 102 | 29 | 0 |
Cross-Orthogonality

(Consolidated Body Modes vs. Baseline Body Modes)
Cross-Orthogonality

(150 Perturbed Modes vs. 150 Baseline Modes)
Cross-Orthogonality

(50 Perturbed Modes vs. 50 Baseline Modes)
Comparison of Shell Body Mode Approximations

(Modal Frequencies)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Baseline (O)</th>
<th>Mode</th>
<th>Baseline (O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>122.20</td>
<td>1</td>
<td>120.97</td>
</tr>
<tr>
<td>2</td>
<td>122.20</td>
<td>2</td>
<td>121.13</td>
</tr>
<tr>
<td>3</td>
<td>315.34</td>
<td>3</td>
<td>312.43</td>
</tr>
<tr>
<td>4</td>
<td>377.21</td>
<td>4</td>
<td>373.36</td>
</tr>
<tr>
<td>5</td>
<td>377.21</td>
<td>5</td>
<td>374.14</td>
</tr>
<tr>
<td>6</td>
<td>397.77</td>
<td>6</td>
<td>403.40</td>
</tr>
<tr>
<td>7</td>
<td>396.65</td>
<td>7</td>
<td>699.42</td>
</tr>
<tr>
<td>8</td>
<td>796.65</td>
<td>8</td>
<td>791.36</td>
</tr>
<tr>
<td>9</td>
<td>801.21</td>
<td>9</td>
<td>802.71</td>
</tr>
<tr>
<td>10</td>
<td>697.48</td>
<td>10</td>
<td>583.97</td>
</tr>
<tr>
<td>11</td>
<td>997.50</td>
<td>11</td>
<td>994.07</td>
</tr>
<tr>
<td>12</td>
<td>1629.96</td>
<td>12</td>
<td>1520.02</td>
</tr>
<tr>
<td>13</td>
<td>1619.56</td>
<td>13</td>
<td>1149.62</td>
</tr>
<tr>
<td>14</td>
<td>1169.59</td>
<td>14</td>
<td>1166.38</td>
</tr>
<tr>
<td>15</td>
<td>1123.46</td>
<td>15</td>
<td>1210.09</td>
</tr>
<tr>
<td>16</td>
<td>1223.49</td>
<td>16</td>
<td>1219.56</td>
</tr>
<tr>
<td>17</td>
<td>1273.43</td>
<td>17</td>
<td>1280.53</td>
</tr>
<tr>
<td>18</td>
<td>1308.24</td>
<td>18</td>
<td>1319.92</td>
</tr>
<tr>
<td>19</td>
<td>1388.41</td>
<td>19</td>
<td>1376.76</td>
</tr>
<tr>
<td>20</td>
<td>1402.79</td>
<td>20</td>
<td>1381.42</td>
</tr>
<tr>
<td>21</td>
<td>1402.83</td>
<td>21</td>
<td>1387.16</td>
</tr>
<tr>
<td>22</td>
<td>1440.38</td>
<td>22</td>
<td>1415.97</td>
</tr>
<tr>
<td>23</td>
<td>1452.66</td>
<td>23</td>
<td>1422.53</td>
</tr>
</tbody>
</table>

(C) = Baseline System Body Modes
(P) = Perturbed System Body:Dominant Modes (p=1)
(C) = Perturbed System Consolidated Body Modes (Reference)
(MOR) = Modified Guyan Reduction (Perturbed System)
(HR) = Harmonic Reduction (Perturbed System)
Comparison of Shell Body Mode Approximations
(Kinetic Energy Distribution: Baseline & Consolidated)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direction</th>
<th>Freq (Hz)</th>
<th>T1</th>
<th>T2</th>
<th>R1</th>
<th>R2</th>
<th>T1</th>
<th>T2</th>
<th>R1</th>
<th>R2</th>
<th>T1</th>
<th>T2</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TY</td>
<td>122.20</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TX</td>
<td>122.20</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>RX</td>
<td>315.24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TX</td>
<td>377.21</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TX</td>
<td>377.21</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>TX</td>
<td>407.77</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>TX</td>
<td>706.65</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TX</td>
<td>706.65</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>RX</td>
<td>541.31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>RX</td>
<td>997.46</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>T2-RX</td>
<td>997.46</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>T2</td>
<td>1020.94</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>RX</td>
<td>1020.94</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>TX-RX</td>
<td>1020.94</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>T2-RX</td>
<td>1020.94</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>TX</td>
<td>1221.45</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>T2-RX</td>
<td>1221.45</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>TX</td>
<td>1221.45</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>TX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>TX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>RX</td>
<td>1060.34</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Consolidated
Comparison of Shell Body Mode Approximations
(Kinetic Energy Distribution: Body-Dominant Perturbed & Consolidated)

<table>
<thead>
<tr>
<th>Selected Body-Dominant Perturbed</th>
<th>Consolidated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Direction</td>
</tr>
<tr>
<td>1</td>
<td>TY</td>
</tr>
<tr>
<td>2</td>
<td>TX</td>
</tr>
<tr>
<td>3</td>
<td>RZ</td>
</tr>
<tr>
<td>4</td>
<td>TY</td>
</tr>
<tr>
<td>5</td>
<td>TX</td>
</tr>
<tr>
<td>6</td>
<td>TZ</td>
</tr>
<tr>
<td>7</td>
<td>TY</td>
</tr>
<tr>
<td>8</td>
<td>TX</td>
</tr>
<tr>
<td>9</td>
<td>RZ</td>
</tr>
<tr>
<td>10</td>
<td>TY-RX</td>
</tr>
<tr>
<td>11</td>
<td>TX-RY</td>
</tr>
<tr>
<td>12</td>
<td>TZ</td>
</tr>
<tr>
<td>13</td>
<td>TY-RX</td>
</tr>
<tr>
<td>14</td>
<td>TX-RY</td>
</tr>
<tr>
<td>15</td>
<td>TY</td>
</tr>
<tr>
<td>16</td>
<td>TX</td>
</tr>
<tr>
<td>17</td>
<td>TZ-TR</td>
</tr>
<tr>
<td>18</td>
<td>TY-RX</td>
</tr>
<tr>
<td>19</td>
<td>TX</td>
</tr>
<tr>
<td>20</td>
<td>RX-TY</td>
</tr>
<tr>
<td>21</td>
<td>RY-TX</td>
</tr>
<tr>
<td>22</td>
<td>TR-TZ</td>
</tr>
<tr>
<td>23</td>
<td>TY</td>
</tr>
</tbody>
</table>

38
Comparison of Shell Body Mode Approximations

(Kinetic Energy Distribution: Generalized Guyan Reduction & Consolidated)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direction</th>
<th>Freq (Hz)</th>
<th>Tz</th>
<th>Ty</th>
<th>Tz</th>
<th>Rx</th>
<th>Ry</th>
<th>Rz</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TY</td>
<td>121.02</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TX</td>
<td>121.14</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>RZ</td>
<td>312.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TY</td>
<td>373.37</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TX</td>
<td>374.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>TZ</td>
<td>663.60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Ty</td>
<td>699.96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TX</td>
<td>704.28</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>RZ</td>
<td>833.72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Ty-Rx</td>
<td>833.90</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Ty-Ry</td>
<td>694.38</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Tz</td>
<td>1020.47</td>
<td>0</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Tz-Rx</td>
<td>1151.88</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Tz-Ry</td>
<td>1166.83</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Ty</td>
<td>1215.29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Tz</td>
<td>1229.14</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Tz-Tz</td>
<td>1261.37</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Ty</td>
<td>1344.84</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Tz</td>
<td>1367.65</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Rz-Ty</td>
<td>1378.78</td>
<td>0</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Ry-Ty</td>
<td>1403.83</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Ty-Rz</td>
<td>1420.94</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Tz-Tz-Ty</td>
<td>1457.86</td>
<td>0</td>
<td>13</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Consolidated

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direction</th>
<th>Freq (Hz)</th>
<th>Tz</th>
<th>Ty</th>
<th>Tz</th>
<th>Rx</th>
<th>Ry</th>
<th>Rz</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ty</td>
<td>120.97</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Tx</td>
<td>121.13</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Rz</td>
<td>312.43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>Ty</td>
<td>373.35</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Tx</td>
<td>374.14</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Tz</td>
<td>483.45</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Ty</td>
<td>699.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Tx</td>
<td>701.56</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Rz</td>
<td>833.71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Ty-Rx</td>
<td>833.97</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Ty-Ry</td>
<td>994.07</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Tz</td>
<td>1203.02</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Tz-Rx</td>
<td>1189.62</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Tz-Ry</td>
<td>1166.38</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Ty</td>
<td>1219.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Tz</td>
<td>1239.15</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Tz-Tz</td>
<td>1260.33</td>
<td>0</td>
<td>69</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Ty</td>
<td>1359.92</td>
<td>0</td>
<td>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>Tz</td>
<td>1375.75</td>
<td>17</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Rz-Ty</td>
<td>1384.47</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Ry-Ty</td>
<td>1387.13</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Ty-Rz</td>
<td>1416.97</td>
<td>0</td>
<td>9</td>
<td>31</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Tz-Tz-Ty</td>
<td>1452.53</td>
<td>0</td>
<td>74</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Comparison of Shell Body Mode Approximations
(Kinetic Energy Distribution: Rigid Cross-Section & Consolidated)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direction</th>
<th>Freq (Hz)</th>
<th>Perturbed</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>Consolidated</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TY</td>
<td>121.02</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>126.97</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>TX</td>
<td>121.13</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>127.13</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>RZ</td>
<td>312.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>3</td>
<td>312.43</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>TY</td>
<td>373.36</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>373.36</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>TX</td>
<td>374.17</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>374.14</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>TZ</td>
<td>463.50</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>463.45</td>
<td>0</td>
<td>98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>TY</td>
<td>688.99</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>698.42</td>
<td>0</td>
<td>86</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>TX</td>
<td>701.70</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>701.16</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>RZ</td>
<td>833.72</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>98</td>
<td>9</td>
<td>833.71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>TY-RX</td>
<td>984.62</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>983.97</td>
<td>0</td>
<td>58</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>TX-RX</td>
<td>986.40</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>984.97</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>1021.74</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1020.62</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>TY-RX</td>
<td>1596.45</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>1549.62</td>
<td>0</td>
<td>51</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>TX-RX</td>
<td>1170.61</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>1166.38</td>
<td>59</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>TX</td>
<td>1215.82</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>1210.00</td>
<td>0</td>
<td>90</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>TX</td>
<td>1228.86</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>1219.59</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>TZ-RX</td>
<td>1268.71</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>1260.33</td>
<td>0</td>
<td>80</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>TX</td>
<td>1371.89</td>
<td>0</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>1359.92</td>
<td>0</td>
<td>85</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>RZ-TY</td>
<td>1391.51</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>79</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>1375.75</td>
<td>0</td>
<td>17</td>
<td>12</td>
<td>61</td>
</tr>
<tr>
<td>20</td>
<td>TX</td>
<td>1391.78</td>
<td>96</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>1381.47</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>RZ-RX</td>
<td>1415.61</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>1387.15</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>22</td>
<td>RZ</td>
<td>1453.35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>1415.87</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>TZ-RX</td>
<td>1503.68</td>
<td>0</td>
<td>2</td>
<td>59</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>23</td>
<td>1422.53</td>
<td>0</td>
<td>74</td>
<td>2</td>
<td>23</td>
</tr>
</tbody>
</table>
Appendix E: Verification of Experimental Modes (ISPE case study using SFD modes)

Bob Coppolino
Measurement Analysis Corporation
15 August 2017
Executive Summary

In view of difficulties encountered by NASA/MSFC with analysis of ISPE modal test data, recorded on its B&K modal test system, the following preliminary development of an objective strategy for modal test data verification and validation was pursued. The presently defined strategy is (1) independent of mathematical model predictions and orthogonality checks, and (2) requires estimation of “left-hand” eigenvectors. The second attribute may be problematic as the author employed the SFD method of test mode estimation, which readily computes “left-hand” eigenvectors for an estimated effective dynamic system. The user of other well-established test mode estimators (e.g., AFPoly) are encouraged to implement similar verification methodology that employs “left-hand” eigenvectors.

The new verification strategy offers objective means for evaluation of estimated modes (acceptable-to-unacceptable figures of merit) based on properties of (a) estimated SDOF modal FRFs and (b) modal FRF coherence factors.
General Overview of the SFD Method
(as published in IMAC XXI, 2003)

How the SFD Method Works

- FRF Skyline Analysis
- SVD on FRF Matrix
- Effective Dynamic System
- ID Global System Modes

Frequency bands with modal activity
Trial vectors and generalized FRFs
Complex eigenvalues
Eigenvectors and Residuals

Numerous variations of SFD have been defined, but not employed herein.
Nuanced Application of SFD
(with Embedded Experimental Mode Verification)

Experimental mode verification focuses on the effective dynamic system
SFD Effective Dynamic System Development

- Organization of MI/MO FRF data

\[
\begin{bmatrix}
\tilde{u}(f) \\
\tilde{u}_1(f) \\
\vdots \\
\tilde{u}_n(f)
\end{bmatrix} =
\begin{bmatrix}
H_1(f) \\
H_2(f) \\
\vdots \\
H_n(f)
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_n
\end{bmatrix}
\begin{bmatrix}
H_0(f) \\
0 \\
\vdots \\
0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\tilde{U}(f) \\
\tilde{H}(f) \\
\vdots \\
\tilde{H}_n(f)
\end{bmatrix} =
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_n
\end{bmatrix}
\begin{bmatrix}
\tilde{X}(f) \\
\tilde{X}_1(f) \\
\vdots \\
\tilde{X}_n(f)
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_n
\end{bmatrix}
\begin{bmatrix}
\tilde{X}(f) \\
\tilde{X}_1(f) \\
\vdots \\
\tilde{X}_n(f)
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\tilde{V}^T \\
\tilde{V}
\end{bmatrix}
\begin{bmatrix}
V \\
1
\end{bmatrix}
= [I]
\]

- Effective dynamic system (physical dof) "shorthand"

\[
\begin{bmatrix}
\ddot{u}_i \\
M^i \dddot{u}_i + M^i k \dot{u}_i + \dddot{u}_i = \dddot{t}_i
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
\ddot{U} \\
M^i B \dddot{U} + M^i K \dot{U} + \dddot{U} = \dddot{T}
\end{bmatrix}
\]

- Effective dynamic system (generalized dof)

\[
\begin{bmatrix}
V^T \\ V
\end{bmatrix}
\begin{bmatrix}
\dddot{\xi} \\
\dddot{\xi}_1 \\
\dddot{\xi}_2 \\
\dddot{\xi}_n
\end{bmatrix}
+ \begin{bmatrix}
V^T \\
V
\end{bmatrix}
\begin{bmatrix}
M^i B \\
M^i K
\end{bmatrix}
\begin{bmatrix}
\dddot{\xi} \\
\dddot{\xi}_1 \\
\dddot{\xi}_2 \\
\dddot{\xi}_n
\end{bmatrix}
= \begin{bmatrix}
V^T \\
V
\end{bmatrix}
\begin{bmatrix}
T
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dddot{\xi} \\
\dddot{\xi}_1 \\
\dddot{\xi}_2 \\
\dddot{\xi}_n
\end{bmatrix}
+ \begin{bmatrix}
B \\
B_1 \\
B_2 \\
B_n
\end{bmatrix}
\begin{bmatrix}
\dddot{\xi} \\
\dddot{\xi}_1 \\
\dddot{\xi}_2 \\
\dddot{\xi}_n
\end{bmatrix}
= \begin{bmatrix}
T
\end{bmatrix}
\]
Effective Dynamic System Verification Operations

- Effective dynamic system

\[
\begin{bmatrix}
\dot{\xi} \\
\dot{\xi}
\end{bmatrix} = \begin{bmatrix}
-B & -K \\
-I & 0
\end{bmatrix} \begin{bmatrix}
\xi \\
\xi
\end{bmatrix} + \begin{bmatrix}
\Gamma \\
0
\end{bmatrix} \{F\} \quad \Rightarrow \quad \{\dot{\eta}\} = [A]\{\eta\} + [B]\{F\}
\]

- Complex system modes & “model” based modal FRFs

\[
\{\eta\} = [\Phi][q] \quad \Rightarrow \quad [\Phi_L][\Phi] = [I] \\
[\Phi_L][A][\Phi] = [\lambda]
\]

\[
\dot{q}_n - \lambda_n q_n = [\Phi_{L,n}B]\{F\}
\]

\[h_{n,\text{model}} = \dot{q}_n\]

- Construction of experimental modal FRFs

\[
\begin{bmatrix}
\dot{\xi} \\
\dot{\xi}
\end{bmatrix} = \begin{bmatrix}
H_0(f) \\
H_0(f)/(i2\pi f)
\end{bmatrix} \quad \Rightarrow \quad h_n(f) = [\Phi_{L,a}] \begin{bmatrix}
H_0(f) \\
H_0(f)/(i2\pi f)
\end{bmatrix}
\]
Attributes of the Modal FRFs

- **Model-based FRFs, \(h_{n,\text{model}} \)**
 - Based on exact frequency domain response of the “SFD” effective dynamic system to unit loading, \(F(f)=1 \).

- **Experimental modal FRFs \(h_n \)**
 - Left hand experimental complex mode, \([\Phi_n] \) serves as a scale factor for combining experimental generalized FRFs, \([H_\alpha(f)] \) that are linear combinations of MI/MO FRFs, \([H(f)] \).
 - The modal FRFs \(h_n \) do not necessarily constrain experimental data to behave as “theoretical” SDOF systems.

- **Validity of experimental modes**
 - Objectively evaluated based on attributes of \(h_n(f) \) and...
 - A coherence metric (defined in the next slide).
Modal FRF and Coherence Metric

- Definition

$$\text{COH}_n = \frac{|h_{n,\text{model}}^* \cdot h_n|^2}{|h_n^* \cdot h_n| \cdot |h_{n,\text{model}}^* \cdot h_{n,\text{model}}|}$$

- Properties and attributes (of $h_n(f)$ and COH$_n$)
 - values $0.0 \leq \text{COH}_n \leq 1.0$
 - Completely independent of TAM mass matrix (FEM model)
 - Performs modal isolation reminiscent of multi-shaker tuning
ISPE Results
<table>
<thead>
<tr>
<th>RV</th>
<th>Temperature (°C)</th>
<th>Deviation (°C)</th>
<th>Standard Deviation</th>
<th>Standard Temperature (°C)</th>
<th>Standard Deviation</th>
<th>In-lab model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>196.7</td>
<td>2.42</td>
<td>9</td>
<td>6.5</td>
<td>7.91</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>271.2</td>
<td>0.87</td>
<td>6</td>
<td>11.5</td>
<td>3.67</td>
<td>Y</td>
</tr>
<tr>
<td>2</td>
<td>271.2</td>
<td>0.87</td>
<td>6</td>
<td>11.5</td>
<td>3.67</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>284.1</td>
<td>0.65</td>
<td>1</td>
<td>19.7</td>
<td>4.29</td>
<td>Y</td>
</tr>
<tr>
<td>6</td>
<td>199.7</td>
<td>0.65</td>
<td>6</td>
<td>9.1</td>
<td>9.15</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>248.6</td>
<td>0.65</td>
<td>6</td>
<td>21.6</td>
<td>5.76</td>
<td>Y</td>
</tr>
<tr>
<td>8</td>
<td>236.6</td>
<td>0.65</td>
<td>4</td>
<td>4.2</td>
<td>4.63</td>
<td>Y</td>
</tr>
<tr>
<td>9</td>
<td>20.56</td>
<td>0.65</td>
<td>6</td>
<td>9.15</td>
<td>5.76</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>24.56</td>
<td>0.65</td>
<td>6</td>
<td>9.15</td>
<td>5.76</td>
<td>Y</td>
</tr>
<tr>
<td>11</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>12</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>13</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>14</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>15</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>17</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>18</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>19</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>20</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>21</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>22</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>23</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>24</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>25</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>26</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>27</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>28</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>29</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>30</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>31</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>32</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>33</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>34</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>35</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>36</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>37</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>38</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>39</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
<tr>
<td>40</td>
<td>20.56</td>
<td>0.65</td>
<td>2</td>
<td>9.1</td>
<td>9.15</td>
<td>Y</td>
</tr>
</tbody>
</table>
Candidate Experimental Modes 46-90

<table>
<thead>
<tr>
<th>V</th>
<th>Capitalized Source</th>
<th>Capitalized Source</th>
<th>Capitalized Source</th>
<th>Capitalized Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>26.76 -0.07</td>
<td>0</td>
<td>0.0</td>
<td>1.29</td>
</tr>
<tr>
<td>47</td>
<td>26.78 -0.07</td>
<td>2</td>
<td>0.0</td>
<td>1.05</td>
</tr>
<tr>
<td>48</td>
<td>27.03 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>49</td>
<td>27.17 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>50</td>
<td>27.15 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>51</td>
<td>27.08 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>52</td>
<td>27.08 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>53</td>
<td>27.00 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>54</td>
<td>28.50 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>55</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>56</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>57</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>58</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>59</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>60</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>61</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>62</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>63</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>64</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>65</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>66</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>67</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>68</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>69</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>70</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>71</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>72</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>73</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>74</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>75</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>76</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>77</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>78</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>79</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>80</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>81</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>82</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>83</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>84</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>85</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>86</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>87</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>88</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>89</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>90</td>
<td>28.76 0.00</td>
<td>0</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>n</td>
<td>Experimental</td>
<td>Normalized</td>
<td>Evaluation Criteria Placement</td>
<td>Insertion</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>48.30</td>
<td>0.50</td>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>1</td>
<td>45.30</td>
<td>0.49</td>
<td>16</td>
<td>14.7</td>
</tr>
<tr>
<td>2</td>
<td>46.95</td>
<td>0.70</td>
<td>49</td>
<td>17.6</td>
</tr>
<tr>
<td>3</td>
<td>47.96</td>
<td>0.81</td>
<td>60</td>
<td>18.0</td>
</tr>
<tr>
<td>4</td>
<td>47.86</td>
<td>0.82</td>
<td>7</td>
<td>18.5</td>
</tr>
<tr>
<td>5</td>
<td>47.85</td>
<td>0.82</td>
<td>9</td>
<td>19.0</td>
</tr>
<tr>
<td>6</td>
<td>47.76</td>
<td>0.76</td>
<td>11</td>
<td>19.0</td>
</tr>
<tr>
<td>7</td>
<td>47.75</td>
<td>0.76</td>
<td>12</td>
<td>19.0</td>
</tr>
<tr>
<td>8</td>
<td>47.75</td>
<td>0.76</td>
<td>13</td>
<td>19.0</td>
</tr>
<tr>
<td>9</td>
<td>47.74</td>
<td>0.76</td>
<td>14</td>
<td>19.0</td>
</tr>
<tr>
<td>10</td>
<td>47.73</td>
<td>0.76</td>
<td>15</td>
<td>19.0</td>
</tr>
<tr>
<td>11</td>
<td>47.72</td>
<td>0.76</td>
<td>16</td>
<td>19.0</td>
</tr>
<tr>
<td>12</td>
<td>47.71</td>
<td>0.76</td>
<td>17</td>
<td>19.0</td>
</tr>
<tr>
<td>13</td>
<td>47.70</td>
<td>0.76</td>
<td>18</td>
<td>19.0</td>
</tr>
<tr>
<td>14</td>
<td>47.69</td>
<td>0.76</td>
<td>19</td>
<td>19.0</td>
</tr>
<tr>
<td>15</td>
<td>47.68</td>
<td>0.76</td>
<td>20</td>
<td>19.0</td>
</tr>
<tr>
<td>16</td>
<td>47.67</td>
<td>0.76</td>
<td>21</td>
<td>19.0</td>
</tr>
<tr>
<td>17</td>
<td>47.66</td>
<td>0.76</td>
<td>22</td>
<td>19.0</td>
</tr>
<tr>
<td>18</td>
<td>47.65</td>
<td>0.76</td>
<td>23</td>
<td>19.0</td>
</tr>
<tr>
<td>19</td>
<td>47.64</td>
<td>0.76</td>
<td>24</td>
<td>19.0</td>
</tr>
<tr>
<td>20</td>
<td>47.63</td>
<td>0.76</td>
<td>25</td>
<td>19.0</td>
</tr>
<tr>
<td>21</td>
<td>47.62</td>
<td>0.76</td>
<td>26</td>
<td>19.0</td>
</tr>
<tr>
<td>22</td>
<td>47.61</td>
<td>0.76</td>
<td>27</td>
<td>19.0</td>
</tr>
<tr>
<td>23</td>
<td>47.60</td>
<td>0.76</td>
<td>28</td>
<td>19.0</td>
</tr>
<tr>
<td>24</td>
<td>47.59</td>
<td>0.76</td>
<td>29</td>
<td>19.0</td>
</tr>
<tr>
<td>25</td>
<td>47.58</td>
<td>0.76</td>
<td>30</td>
<td>19.0</td>
</tr>
<tr>
<td>26</td>
<td>47.57</td>
<td>0.76</td>
<td>31</td>
<td>19.0</td>
</tr>
<tr>
<td>27</td>
<td>47.56</td>
<td>0.76</td>
<td>32</td>
<td>19.0</td>
</tr>
<tr>
<td>28</td>
<td>47.55</td>
<td>0.76</td>
<td>33</td>
<td>19.0</td>
</tr>
<tr>
<td>29</td>
<td>47.54</td>
<td>0.76</td>
<td>34</td>
<td>19.0</td>
</tr>
<tr>
<td>30</td>
<td>47.53</td>
<td>0.76</td>
<td>35</td>
<td>19.0</td>
</tr>
<tr>
<td>31</td>
<td>47.52</td>
<td>0.76</td>
<td>36</td>
<td>19.0</td>
</tr>
<tr>
<td>32</td>
<td>47.51</td>
<td>0.76</td>
<td>37</td>
<td>19.0</td>
</tr>
<tr>
<td>33</td>
<td>47.50</td>
<td>0.76</td>
<td>38</td>
<td>19.0</td>
</tr>
<tr>
<td>34</td>
<td>47.49</td>
<td>0.76</td>
<td>39</td>
<td>19.0</td>
</tr>
<tr>
<td>35</td>
<td>47.48</td>
<td>0.76</td>
<td>40</td>
<td>19.0</td>
</tr>
<tr>
<td>36</td>
<td>47.47</td>
<td>0.76</td>
<td>41</td>
<td>19.0</td>
</tr>
<tr>
<td>37</td>
<td>47.46</td>
<td>0.76</td>
<td>42</td>
<td>19.0</td>
</tr>
<tr>
<td>38</td>
<td>47.45</td>
<td>0.76</td>
<td>43</td>
<td>19.0</td>
</tr>
<tr>
<td>39</td>
<td>47.44</td>
<td>0.76</td>
<td>44</td>
<td>19.0</td>
</tr>
<tr>
<td>40</td>
<td>47.43</td>
<td>0.76</td>
<td>45</td>
<td>19.0</td>
</tr>
<tr>
<td>41</td>
<td>47.42</td>
<td>0.76</td>
<td>46</td>
<td>19.0</td>
</tr>
<tr>
<td>42</td>
<td>47.41</td>
<td>0.76</td>
<td>47</td>
<td>19.0</td>
</tr>
<tr>
<td>43</td>
<td>47.40</td>
<td>0.76</td>
<td>48</td>
<td>19.0</td>
</tr>
<tr>
<td>44</td>
<td>47.39</td>
<td>0.76</td>
<td>49</td>
<td>19.0</td>
</tr>
<tr>
<td>45</td>
<td>47.38</td>
<td>0.76</td>
<td>50</td>
<td>19.0</td>
</tr>
<tr>
<td>46</td>
<td>47.37</td>
<td>0.76</td>
<td>51</td>
<td>19.0</td>
</tr>
<tr>
<td>47</td>
<td>47.36</td>
<td>0.76</td>
<td>52</td>
<td>19.0</td>
</tr>
<tr>
<td>48</td>
<td>47.35</td>
<td>0.76</td>
<td>53</td>
<td>19.0</td>
</tr>
<tr>
<td>49</td>
<td>47.34</td>
<td>0.76</td>
<td>54</td>
<td>19.0</td>
</tr>
<tr>
<td>50</td>
<td>47.33</td>
<td>0.76</td>
<td>55</td>
<td>19.0</td>
</tr>
<tr>
<td>51</td>
<td>47.32</td>
<td>0.76</td>
<td>56</td>
<td>19.0</td>
</tr>
<tr>
<td>52</td>
<td>47.31</td>
<td>0.76</td>
<td>57</td>
<td>19.0</td>
</tr>
<tr>
<td>53</td>
<td>47.30</td>
<td>0.76</td>
<td>58</td>
<td>19.0</td>
</tr>
<tr>
<td>54</td>
<td>47.29</td>
<td>0.76</td>
<td>59</td>
<td>19.0</td>
</tr>
<tr>
<td>55</td>
<td>47.28</td>
<td>0.76</td>
<td>60</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Candidate Experimental Modes 91-133
Candidate Experimental Modes 1-4
Candidate Experimental Modes 5-8
Candidate Experimental Modes 9-12
Candidate Experimental Modes 13-16
Candidate Experimental Modes 17-20
Candidate Experimental Modes 21-24
Candidate Experimental Modes 25-28
Candidate Experimental Modes 29-32
Candidate Experimental Modes 33-36
Candidate Experimental Modes 37-40
Candidate Experimental Modes 41-44
Candidate Experimental Modes 45-48
Candidate Experimental Modes 49-52
Candidate Experimental Modes 53-56
Candidate Experimental Modes 57-60
Candidate Experimental Modes 61-64
Candidate Experimental Modes 65-68
Candidate Experimental Modes 69-72
Candidate Experimental Modes 73-76
Candidate Experimental Modes 77-80
Candidate Experimental Modes 81-84
Candidate Experimental Modes 85-88
Candidate Experimental Modes 89-92
Candidate Experimental Modes 93-96
Candidate Experimental Modes 97-100
Candidate Experimental Modes 101-104
Candidate Experimental Modes 105-108
Candidate Experimental Modes 109-112
Candidate Experimental Modes 113-116
Candidate Experimental Modes 117-120
Candidate Experimental Modes 121-124
Candidate Experimental Modes 125-128
Candidate Experimental Modes 129-132
Candidate Experimental Mode 133
Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

Appendices

Coppolino, Robert N.

NASA Langley Research Center
Hampton, VA 23681-2199

Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

Verification and Validation; Space Launch System; Residual Mode Augmentation; Modified Guyan Reduction; Mode Consolidation; Experimental Mode Verification

ABSTRACT

Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.