PEG Modifications & Enhancements for SLS Block-1 and Block-1B Vehicles

Paul Von der Porten, MSFC
Naeem Ahmad, MSFC
Matt Hawkins, MSFC/ESSCA/Jacobs Engineering
Thomas Fill, Charles Stark Draper Laboratory
2018 AAS GNC Conference
• Introduction
• Block-1 Modifications to Powered Explicit Guidance (PEG) Since Shuttle
• Block-1B 1-target VS 2-target Ascent Guidance Problems
• Block-1-to-Block-1B Enhancements
• Conclusion
Introduction

- Marshall Space Flight Center (MSFC) Guidance, Navigation, & Control (GN&C) Team has an expanded responsibility going from Space Launch System (SLS) Block-1 to Block-1B vehicles
 - Characteristics of Block-1 ascent burn allow for use of a modified version of Space Shuttle’s Powered Explicit Guidance (PEG) algorithm
 - Long-arc burns and the need to carry out Lunar Vicinity and Earth Escape missions require enhancements to PEG for Block-1B

<table>
<thead>
<tr>
<th>MSFC</th>
<th>Block-1</th>
<th>Block-1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>GN&C Responsibility</td>
<td>Ascent Only</td>
<td>Ascent and In-space</td>
</tr>
<tr>
<td>Guided Burns</td>
<td>Core Stage (CS) Ascent Burn to Low Earth Orbit (LEO)</td>
<td>CS/EUS Ascent Burns to LEO, Apogee Raise Burn (ARB), Trans-Lunar Injection (TLI), Earth Departure Burn (EDB), Settling Motor Disposal Burn</td>
</tr>
<tr>
<td>Guidance Algorithm</td>
<td>Modified Shuttle PEG</td>
<td>Enhanced Shuttle PEG</td>
</tr>
</tbody>
</table>
Block-1 Modifications to PEG Since Shuttle

Block-1’s ascent burn arc (~13°) similar size as Space Shuttle
- Allows for straight adaptation of Shuttle’s PEG with the ascent desired velocity mode

Modifications:
- Multi-phase PEG and PEG Phase Manager
 - Replaces Shuttle’s algorithmic approach to switch between 3 phases for a data-driven approach
 - Moves calculation of most burn times and all mass-flowrate-to-initial-mass time constants out of time-to-go computation algorithm into an outer loop wrapper
- Lofting parameter for Launch Abort System Jettison
 - Induces additional lofting by applying an altitude bias to the desired radius magnitude
- Engine-Out Logic
 - Uses inertial velocity to decide if an alternate mission target is needed in response to a CS engine-out
- Thrust Factor
 - Similar to Shuttle’s FT_FACTOR
 - Provides updated propulsion knowledge to PEG

Modifications allow an outer loop to drive PEG for Block-1
Block-1B 1-target VS 2-target Ascent Guidance

Block-1B Ascent Profile
- Boost stage: Two Solid Rocket Boosters and CS engines burn to booster separation
- CS burn: CS engines burn to intermediate point in ascent trajectory
- EUS Ascent: EUS engines burn to LEO insertion

Two flight techniques studied early in Block-1B design:

<table>
<thead>
<tr>
<th></th>
<th>1-target</th>
<th>2-target</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS Burn Approach</td>
<td>Burn to completion</td>
<td>Targeted burn with flight performance reserve</td>
</tr>
<tr>
<td>EUS Ascent approach</td>
<td>Targeted burn with flight performance reserve</td>
<td>Targeted burn with flight performance reserve</td>
</tr>
<tr>
<td>PEG Modeling</td>
<td>Entire burn arc (~50°) from booster separation to LEO</td>
<td>Separate targeted burns for CS and EUS Ascent (i.e. PEG reset for EUS Ascent burn)</td>
</tr>
</tbody>
</table>

- **2-target baselined for Block-1B**
- **1-target presented several convergence issues that led to several bullet-proof enhancements to PEG kept for Block-1B**

Challenging 1-target guidance problem led to several bullet-proofing enhancements for PEG
Block-1-to-Block-1B Enhancements

- **Safeguards for Constructing Turn Rate Vector**
 - Limiting Tangent of Thrust Angle
 - Useful initial strategy to limit turn rate magnitude
 - Bullet-proof enhancement from 1-target problem
 - Elevation-limit
 - Shuttle heritage
 - Ensures thrust direction from PEG’s steering law does not have a component retrograde compared to cutoff radial direction
 - Required to close engine-out 2-target scenarios
 - Sign Reversal of Thrust Turning Rate Vector
 - Constructs augmented coordinate frame to protect orthogonality constraint from yielding a thrust turning rate sign reversal
 - Bullet-proof enhancement from 1-target problem

Safeguards developed for Turn Rate Vector to address stress situations due to long-arc burns
Block-1-to-Block-1B Enhancements

- **Scaling Identity Jacobian in PEG Corrector**
 - Applies a contraction factor to PEG’s traditional Identity matrix Jacobian as a simplified scheme to improve PEG’s convergence for long-arc burns
 - Bullet-proof enhancement from 1-target problem

- **Plane Constraint Strategy**
 - Strategy to unify plane constraint for both ascent and in-space burns
 - PLANE_OFF, RV_NULL, V_NULL, INTERCEPT

- **New Desired Velocity Routines**
 - Linear Terminal Velocity Constraint
 - Shuttle heritage
 - Used for ARB and TLI burns
 - Hyperbolic Target

Additional enhancements bullet proof PEG and make PEG capable of carrying out Block-1B missions
Conclusion

- Space Shuttle PEG modified to accommodate initial evolution of SLS, Block-1
- Several enhancements to PEG required going from Block-1 to Block-1B to carry out demanding Block-1B missions
- Improvements make PEG capable for use on the SLS Block-1B vehicle as part of the GN&C System
Thank you!

Any questions?
PEG Linear Tangent Guidance Geometry

Current LVLH ($X_L; Z_L$)

Trajectory, or burn arc

$\vec{\lambda}(t_o)$

$\vec{\lambda}(t_{ref}) = \vec{\lambda}_c$

$\vec{\lambda}(t_o + t_b)$

Thrust angle (ϕ)

Thrust vector rotation direction (inertial thrust arc)

Z_L

Z_G Cutoff LVLH ($X_G; Z_G$) or Guidance Frame