Nuclear Thermal Propulsion Engine Technology Maturation Plan

J Boise Pearson, NASA Marshall Space Flight Center
John M. Helmey, BWX Technologies
C. Russell Joyner, Aerojet Rocketdyne
Jonathan K. Witter, BWX Technologies

Nuclear and Emerging Technologies for Space 2018 Conference
Las Vegas, NV
26 February – 1 March, 2018
Partners and Participants

• Support and Funding
 – This work is being done under the Nuclear Propulsion Project Office (NPPO) at NASA Marshall Space Flight Center
 – The NPPO is funded through the NASA Game Changing Development (GCD) Program of the Space Transportation Mission Directorate (STMD)

• This Technology Maturation Plan has been created with the hard work of:
 – Nuclear Propulsion Project Office
 – Aerojet Rocketdyne
 – BWX Technologies
Mission Architecture

- Engine requirements derived from a series of potential Mars missions:
 - Lunar Gateway aggregation/assembly
 - LDHEO departure
 - SLS 8.4m fairing
 - Three 25,000 lbf engines, Isp of 900s
Technology Maturation Plan (TMP)

TMP Objectives

• The TMP is a potential development plan for NTP technologies that includes current technology development and potential growth into the ground test of a protoflight NTP engine system.
 - General approach is to minimize early costs while systematically eliminating risks
 - Early focus on reactor fuel development
 - Technology gaps between current liquid engine state of the art and NTP engine needs
 - Ground test facility technologies
Scaled Facility Tests / Demonstrations

15
Rocket Exhaust Capture System (RECS) Subscale & Facilities Design

16
RECS SS Phase II Tests

17
H2 Heater Design & Fab
TMP, Prototype Reactor Development

Pre-Decisional, For Discussion Purposes Only
Full Scale Facilities Design & Preparations

21 Full Scale Test Facility Conceptual Design

22 Full Scale Facility Design & Fabrication

27 Assemble Engine / Reactor #1 on Test Stand
TMP, Prototype Engine Development and Test

Engine / Reactor Full Scale Cold Flow Tests (Non-nuclear)

Powerpack Critical Components Design, Fab & Testing

Prototype Engine Development

Full Scale Full Power Testing (Nuclear Powered)

28. Full Scale Test Series - Zero to Low Power Engine #1 (Nuclear Facility Controlled LH2 Supply initially with transition to TPA LH2 supply using engine control system)

29. Remove Test Engine #1 / Replace with Test Engine #2 Only if required

30. Full Scale Full Thrust Test Series Base Plan: Engine 1 Alternate: Engine 2

Engine Manufacturing

26a. Manufacture Prototype Test Engine #1

26b. Manufacture Prototype Test Engine #2

NTP Prototype Test Engine Final Design
Summary

NTP Technology Maturation Plan Summary

• The TMP is a potential development plan for NTP technologies that includes current technology development and potential growth into the ground test of a protoflight NTP engine system. The integrated approach to technology maturation, prototype engine development and a ground test demonstration offers a pathway to change NTP from an “advanced” propulsion concept forever waiting for its chance, to a demonstrated propulsion technology ready for flight engine development.