Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

Brian Taylor
Dr. Bill Emrich
Dr. Dennis Tucker
Marvin Barnes
NASA MSFC

Nicolas Donders
Kettering University
Kelsa Benensky
University of Tennessee

2/26/2018
Outline

• Background
• Introduction
• Modeling
 – Neutronics
 – Fluid/Thermal
• Fabrication Experiments
 – material selection
 – Process
• Material Characterization
• Path Forward
Background

• **Nuclear Thermal Propulsion**
 – NTP uses a reactor to heat propellant prior to expansion through a nozzle
 – Can achieve more than twice the I_{sp} than chemical engines

• **Traditional Reactor Elements**
 – Hexagonal rods with straight axial flow passages
 – Particle Beds attempted
 • Much larger surface area
 • thermal instabilities/hot spots
Grooved Ring Fuel Element

- **New fuel element geometry**
 - Stacked grooved disks designed to increase surface area and heat transfer to propellant
 - Leading to higher thrust/weight engines
 - Propellant flows from outer to inner diameter of disks which heat the propellant
 - Stack of disks makes an element
 - Cluster of elements in a reactor

- **Carbide materials (e.g. UC, NbC, ZrC)**
 - Mixture can reach higher melting points than other fuel forms
 - Low reactivity with H$_2$ propellant

- **Goal: high propellant temperatures and higher thrust/weight**
 - More efficient engine
NEUTRONICS MODELING
Neutronics Modeling

• Purpose
 – Develop a concept reactor layout for a set thrust goal
 • Power and distribution
 – Analyze impact of material selection upon nuclear reactions
 – Study relative material quantities
 – Determine uranium enrichment and quantities required
 • Relate to theoretical density
Reactor Design

NTR Reactor Configuration Using (U-Zr-Nb)C Fuel
25K Thrust -- 8 kW/cm³ -- Optimal Fuel to Moderator Ratio = 0.261
NTR Reactor Configuration Using (U-Zr-Ta)C Fuel
25K Thrust -- 8 kW/cm³ -- Optimal Fuel to Moderator Ratio = 2.95
Neutronics Modeling

Uranium Carbide Material Neutron Absorption Cross-Sections
Neutronics Modeling

- Grooves and porosity decrease overall density requiring additional UC for reactivity
Neutronics Modeling

• Power peaking profile of a grooved ring fuel element
 - Modest power peaking seen so far
THERMAL FLUID MODEL
Thermal Fluid Model

- **Truncated element modeled (2 rings)**
 - Comsol
 - Beryllium structure with zirconium carbide rings
 - Properties of mixtures not yet developed for model
 - Boundary conditions varied to determine appropriate pressure delta to heat the flow for a given power/volume of 8 kW/cm³
 - Showed fluid/thermal process works as expected
FABRICATION EXPERIMENTS
Selection of Materials

• Material Selection
 – Need high melting temperature and low neutron cross section (except uranium)
 – NbC and ZrC chosen
 • Lower neutron cross section than HC or TC
 – Uranium Carbide Surrogate
 • Substitute for uranium
 – Avoid regulatory hurdles
 • Vanadium Carbide chosen
 – Similar crystal structure
Experimental Fabrication Process

• Sift or grind materials to smaller size

• Spark Plasma Sintering
 – Powder compressed at high pressure in die
 – High current passed through die
 • Control dwell, rise and cooling times as well as temperatures
 – Trying to reach high theoretical density
 • Porosity reduces reactivity and could lead to hydrogen reactions with the uranium

• Goal
 – Achieve a uniform distribution in a solid solution, ultimately with low porosity
 – Reached up to 98% theoretical density

• Grooves
 – Looking for best way to cut geometry
 • Attempting to try to use a water jet
DCS Variables Chart

Screening Runs of “As Received” $[V_{0.120}Zr_{0.587}Nb_{0.293}]\cdot C$

<table>
<thead>
<tr>
<th>Date</th>
<th>Sintering Temperature [°C]</th>
<th>Dwell Time [min]</th>
<th>Cooling Rate [°C/min]</th>
<th>Pressure [Mpa]</th>
<th>Density [g/cc]</th>
<th>% Theoretical Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/27/2017</td>
<td>1500</td>
<td>10</td>
<td>100</td>
<td>50</td>
<td>5.65</td>
<td>80.77%</td>
</tr>
<tr>
<td>1/31/2017</td>
<td>1500</td>
<td>10</td>
<td>100</td>
<td>50</td>
<td>5.75</td>
<td>82.20%</td>
</tr>
<tr>
<td>2/1/2017</td>
<td>1600</td>
<td>10</td>
<td>100</td>
<td>50</td>
<td>5.86</td>
<td>83.77%</td>
</tr>
<tr>
<td>2/2/2017</td>
<td>1600</td>
<td>20</td>
<td>100</td>
<td>50</td>
<td>6.05</td>
<td>86.48%</td>
</tr>
<tr>
<td>2/3/2017</td>
<td>1500</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>6.46</td>
<td>92.34%</td>
</tr>
<tr>
<td>2/13/2017</td>
<td>1600</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>6.20</td>
<td>88.62%</td>
</tr>
<tr>
<td>2/24/2017</td>
<td>1600</td>
<td>20</td>
<td>200</td>
<td>50</td>
<td>6.65</td>
<td>95.06%</td>
</tr>
<tr>
<td>3/17/2017</td>
<td>1600</td>
<td>20</td>
<td>200</td>
<td>50</td>
<td>6.60</td>
<td>94.35%</td>
</tr>
<tr>
<td>3/20/2017</td>
<td>1700</td>
<td>20</td>
<td>200</td>
<td>50</td>
<td>6.80</td>
<td>97.21%</td>
</tr>
<tr>
<td>3/21/2017</td>
<td>1550</td>
<td>30</td>
<td>200</td>
<td>50</td>
<td>6.83</td>
<td>97.64%</td>
</tr>
<tr>
<td>3/22/2017</td>
<td>1600</td>
<td>20</td>
<td>200</td>
<td>50</td>
<td>6.87</td>
<td>98.21%</td>
</tr>
<tr>
<td>3/27/2017</td>
<td>1600</td>
<td>20</td>
<td>200</td>
<td>60</td>
<td>6.85</td>
<td>97.92%</td>
</tr>
</tbody>
</table>

- Direct Current Sintering Variables and the resulting density of sample
Fabrication Experiments – Results to Date

<table>
<thead>
<tr>
<th>Material %</th>
<th>C</th>
<th>O</th>
<th>V</th>
<th>Zr</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum 1</td>
<td>23.47</td>
<td>66.41</td>
<td>6.71</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>Spectrum 2</td>
<td>26.59</td>
<td>1.32</td>
<td>0.24</td>
<td>67.92</td>
<td>3.94</td>
</tr>
<tr>
<td>Spectrum 3</td>
<td>25.62</td>
<td>0.92</td>
<td>0.31</td>
<td>68.95</td>
<td>4.20</td>
</tr>
<tr>
<td>Spectrum 4</td>
<td>25.48</td>
<td>1.21</td>
<td>0.38</td>
<td>68.81</td>
<td>4.12</td>
</tr>
<tr>
<td>Spectrum 5</td>
<td>34.74</td>
<td>1.85</td>
<td>22.79</td>
<td>40.63</td>
<td></td>
</tr>
<tr>
<td>Spectrum 6</td>
<td>35.56</td>
<td>1.93</td>
<td>0.25</td>
<td>22.75</td>
<td>39.51</td>
</tr>
<tr>
<td>Spectrum 7</td>
<td>31.71</td>
<td>2.62</td>
<td>0.39</td>
<td>26.76</td>
<td>38.52</td>
</tr>
</tbody>
</table>

- Early samples used powders as supplied from the manufacturer
- Saw clumping and poor distribution
Fabrication Experiments – Results to Date

Table 2: X-Ray Spectroscopy Analysis of Figure 17

<table>
<thead>
<tr>
<th>%</th>
<th>C</th>
<th>H</th>
<th><</th>
<th>Zr</th>
<th>Nb</th>
<th>Hf</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>18.1</td>
<td>80.8</td>
<td>0</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18.24</td>
<td>1.15</td>
<td>78.26</td>
<td>0.36</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>18.56</td>
<td>0.49</td>
<td>78.29</td>
<td>0.65</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18.94</td>
<td>2.1</td>
<td>31.08</td>
<td>29.87</td>
<td>15.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16.06</td>
<td>3.04</td>
<td>25.52</td>
<td>33.76</td>
<td>21.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18.77</td>
<td>0.19</td>
<td>77.83</td>
<td>3.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>17.67</td>
<td>0.44</td>
<td>73.07</td>
<td>8.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19.32</td>
<td>1.69</td>
<td>47.06</td>
<td>30.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Sifting materials improved distribution
CARBIDE MATERIAL CHARACTERIZATION
Thermal Diffusivity Measurements

• The team is attempting to measure thermal diffusivity to fill in gaps in the literature
 – Disintegration of the first samples occurred for unknown reasons
 • Reasons are unknown, but it should be noted that samples survived much higher temperatures in CFEET
 • Future measurement attempts are planned

![THERMAL DIFFUSIVITY](chart)
Hot Hydrogen Environment Testing

- Samples tested in Compact Fuel Element Environmental Test (CFEET) system at MSFC
 - 50 kW induction power supply and two-color pyrometers for temperature measurements up to 3000 °C
 - Designed to flow hydrogen across subscale fuel materials for testing at high temperatures for up to ten hours.
Hot Hydrogen Environment Testing

- **CFEET Results**
 - 1st sample maintained structural integrity for 30 minutes at 2000 K
 - 2nd set of three samples were run at 2250 K for 30 minutes
 - X-ray diffraction (XRD) analysis appears to show the tricarbides moving toward a solid solution
 - Unidentified peaks need further analysis to verify if they are due to the formation of free carbon, ZrC2, or other lower melting temperature compounds
Oxide Formation in Milled Carbides

- Milled Sintered Carbides showed cracks post sintering.
- Milled carbides developed blister formation and experienced crack propagation post CFEET test to 2500 to 2750 K.
Oxide Formation in Milled Carbides

- Oxide formation seen after milling powders
Conclusions and Path Forward

• Fabrication has come a long way in showing a viable means for producing these tricarbide rings
 – High densities reached
 – Appears to be moving toward a solid solution after an extended period in a hot hydrogen environment

• Tricarbide samples have held up in a hot hydrogen environment
 – Future hotter tests are planned

• Path Forward
 – Sift powders / no milling
 – Heat treat in CFEET or Graphite Furnace at ~2500 K for extended period
 • Evaluate for solid solution
 – Water jet test fabrication of geometry