Stabilized Approach Criteria

Bridging the Gap Between Theory and Practice

Peter Zaal
San José State University
NASA Ames Research Center

Spring InfoShare 2018

March 21, 2018
Introduction

• Approach and landing is the most common phase of flight for aviation accidents

• 83% of runway excursions could have been avoided with a decision to go around (Flight Safety Foundation study)

• Half of runway excursions result from a stabilized approach to a contaminated runway (Boeing study)
Introduction

Stabilized approach criteria have been established

However, we have a gap...

Only 3% of unstable approaches result in a go-around (FSF)
Why is there a gap?

- Lack of go-around maneuver practice
- Belief that the approach can be corrected
- Pressure of flight schedule
- Excessive workload
- Insufficient pilot communication
- Fatigue
- ATC induced pressures
- Management disengagement
- Late takeover from automation
- Lack of situation awareness
- Criteria are too complex or unrealistic
- Lack of policies that encourage go-arounds
How can we close the gap?

Alter the criteria
- Simplify
- Change stabilization height
- More realistic thresholds

Encourage compliance
- Management awareness and tracking
- No fault go-around policies
- Use of active callouts

Proposed FSF Guidelines
- On correct flight path
- Correct configuration
- Speed is between V_{ref} and $V_{ref} + 10$ (without wind adjustment)
- Sink rate less than 1,000 fpm
- Stabilized thrust
- Use active communication – e.g. “Continue/Go-around” callout at 300 ft AGL
Purpose

Examine, through simulation, the issues surrounding the FSF recommendations and where some in industry are moving toward

Experiment Goal

Determine the critical factors in *go-around criteria* and explore the appropriate settings for the thresholds of those factors.
Human-In-The-Loop Experiments

Experiment Development

- Workshop with stakeholders
 - Phase I: June 2017
 - Phase II: March 2018

Conduct Experiment

- First experiment took place in Oct/Nov 2017
- Second experiment planned for July 2018

Document Findings

- The final report will be publically available End 2018
Experiment Description

• **Premise**: evaluate touchdown performance under various starting conditions

• Pilots instructed to always land

• **Expectation**: some starting conditions would not allow pilots to land smoothly or in the touchdown zone

• **Touchdown performance and questionnaire data**: provide insights into possible universal go-around criteria
Flight Simulators

- 3 CAE Level D Flight Simulators

- The three aircraft types tested provided the ability to compare results between narrow-body and wide-body aircraft

Airbus A330-200 Boeing 737-800 Boeing 747-400
Experiment Factors

<table>
<thead>
<tr>
<th>Gate Height</th>
<th>Glideslope Deviation</th>
<th>Localizer Deviation</th>
<th>Rate of Descent</th>
<th>V_{ref} Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1000 / 1250</td>
<td>+0 / +10 / +20</td>
</tr>
<tr>
<td>300</td>
<td>0 / 0.5</td>
<td>0 / 0.5</td>
<td>1000 / 1500</td>
<td>+0 / +10 / +20</td>
</tr>
<tr>
<td>500</td>
<td>0 / 0.75 / 1.5</td>
<td>0 / 0.75 / 1.5</td>
<td>1000 / 1500</td>
<td>+0 / +10 / +20</td>
</tr>
</tbody>
</table>

Fixed environmental conditions:
1. San Francisco International Airport
2. CAVU
3. 10-kts tail wind, moderate turbulence
4. Wet runway, medium braking

Fixed aircraft state:
1. Maximum landing weight
2. Landing configuration
Landing Performance Criteria

1. **Longitudinal touchdown**: 1,000 - 2,000 feet from the threshold
2. **Lateral touchdown**: centerline between main wing gear
3. **Sink rate at touchdown**: < 6 fps
4. Bring the aircraft to a full stop as quickly as possible

![Diagram showing desired touchdown and touchdown box with distances 500 ft, 36 ft, 1000 ft, 100 ft, 300 ft, 500 ft]
Questionnaires

<table>
<thead>
<tr>
<th>Pre-Sim Questionnaire</th>
<th>Post-Run Questionnaire</th>
<th>Post-Sim Questionnaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Demographics</td>
<td>• Workload, fatigue, and risk during run</td>
<td>• Personal stable approach criteria based on simulator experience</td>
</tr>
<tr>
<td>• Airline’s current stable approach criteria</td>
<td>• Would you have done a go-around and why?</td>
<td></td>
</tr>
<tr>
<td>• Opinions on airline’s current stable approach criteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment Considerations

1. Six crews per simulator
2. Captain and First Officer alternated as the pilot flying
3. 184 runs per crew / eight one-hour sessions / two days
4. Both pilots completed a questionnaire after each run

300-feet gate, 0.5 dot LOC dev
Aggregate Simulator Data Results

- Aircraft type had the strongest effect
- V_{ref} deviation had a strong effect at 100-ft
- Limited effects of starting conditions at 300-ft and 500-ft
By Simulator Data Results

- Similar effects for all aircraft types
- V_{ref} deviation had a strong effect at 100-ft
- Idle thrust in approach occurred more often at lower gate heights

![Graph showing idle thrust in approach, % for B747 simulator at different gate heights.](image)

![Graph showing runway distance left at 50 kts, ft for B747 simulator at different gate heights.](image)
Differences Between Simulators

Longitudinal Touchdown Deviation, ft

Sinkrate, ft/s

Sim 1

Sim 2

Sim 3

Desired Performance
Questionnaire Risk Analysis

- **Fatigue** and **workload** strongly influence perceived landing risk
- Decision to go around made more often with higher perceived risk
Questionnaire Risk Analysis

- Risk perception was mainly affected by initial condition (not touchdown performance)
- Perceived risk increased with increasing V_{ref} and LOC deviation
Go-Around Response Modeling

V_{ref} deviation followed by localizer deviation had the strongest influence on go-around decision

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Contribution</th>
<th>Portion</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vref Deviation</td>
<td>14.81</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>Localizer Deviation</td>
<td>12.51</td>
<td>0.24</td>
<td>2</td>
</tr>
<tr>
<td>Glideslope Deviation</td>
<td>10.43</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Simulator Flown</td>
<td>6.44</td>
<td>0.12</td>
<td>4</td>
</tr>
<tr>
<td>Rate of Descent Deviation</td>
<td>5.01</td>
<td>0.1</td>
<td>5</td>
</tr>
<tr>
<td>Gate Height</td>
<td>3.17</td>
<td>0.06</td>
<td>6</td>
</tr>
</tbody>
</table>
Conclusions – Closing the Gap

1. Results show little difference between the 300-ft and 500-ft gates

2. Conditions at the 100-ft gate introduced significant differences in touchdown performance

3. V_{ref} deviation and localizer deviation at the starting gate had the strongest influence on perceived risk and go-around decision
Next Steps

1. A second experiment will be conducted July 2018 focusing on effects of environmental and airport conditions.

2. A workshop here at InfoShare tomorrow (March 22) at 10:30 AM, will help us to develop and plan the next experiment.

3. Results of the two experiments combined will give insights into possible universal go-around criteria.

4. The final report will be publicly available.
Stabilized Approach Criteria

Bridging the Gap Between Theory and Practice

Peter Zaal
San José State University
NASA Ames Research Center

Spring InfoShare 2018

March 21, 2018