High Energy Transient Science at MSFC

Image Credit: NASA's Goddard Space Flight Center/CI Lab

Colleen A. Wilson-Hodge (NASA/MSFC)
The Fermi Gamma ray Space Telescope

Large Area Telescope

Gamma ray Burst Monitor (GBM)
Hard X-ray Variations in the Crab Nebula

Wilson-Hodge et al. 2011
What is a gamma-ray burst?

Image credit: NASA/GSFC
Types of GRBs

Long GRBs
• Produced by a massive star exploding
• 200 per year triggered with GBM

Short GRBs
• Produced by merging neutron stars
• 40 per year triggered with GBM
• >80 per year found in searches for weak GRBs
6222 Fermi GBM triggers

- 2238 GRBs
- 1176 Solar Flares
- 668 Others, including 189 from Swift J0243.6+6124 and 169 from V404 Cyg; 1041 particles
- 275 Magnetars
- 875 TGFs
The morning of August 17, 2017

Gamma rays, 50 to 300 keV

Gravitational-wave strain

Video and image Credit: NASA GSFC, Caltech/MIT/LIGO Lab and ESA
GBM Triggered GRBs

2218 GBM GRBs
293 Swift GRBs
139 LAT GRBs
Locating the events on the sky

Probability of chance coincidence: 1 in 20,000,000
A weak short GRB with a low-energy tail

- GRB 170817A is a short GRB—predicted to originate from mergers
- It appears to have the traditional “spike” but also a weak lower-energy tail
- It appears intrinsically less luminous than any other GRB with measured distance

GRB Observing Scenarios

- Simplest model is just a uniform density jet with sharp edges

- Possible that we are looking off the center of the jet, which does not have a uniform density

- For the low-energy emission after the initial GRB spike, there may be a “cocoon” of surrounding material that is pulled along by the interior jet
Science from GW170817 and GRB 170817A

• Directly measure the speed of gravity
 – It is the same as the speed of light within one part in one quadrillion!

• Probe the neutron star equation of state: the densest matter in the universe!

• Understand the emission physics of relativistic jets and the engine that produces the short GRB

• Estimate the rate of events like these throughout the universe
Counterpart to a Black hole merger?

Connaughton et al. 2016

Image Credit: LIGO
Future Mission Work at MSFC
X-ray Time Domain Desirati 2020

Discovery & Monitoring
- All Sky Monitor
- Science drivers: GW counterparts, GRBs, SNe shock breakout, accretion, tidal disruptions
- ~Daily Cadence

Rapid Response
- Rapid slew (< hr)
- Science drivers: GW counterparts, GRBs, stellar flares/space weather, transients
- High Availability

High Time Resolution
- Sub-ms timing
- Science drivers: Strong gravity, neutron star physics, XRB/AGN physics, QPOs
- High Sensitivity

From Daryl Haggard
STROBE-X Instrument Concept

- STROBE-X combines the strengths of NICER and LOFT: High throughput X-ray timing with good spectroscopy
- All components are already high TRL
- Highly modular design improves reliability at reduced cost and allows easy scaling.

X-ray Concentrator Array (0.2-12 keV)

Large effective area >5 m² @ 6 keV

Wide Field Monitor (2-50 keV)

Large Area Detector (2-30 keV)
X-ray Concentrator Array

- Low background, high throughput
- Enables high time resolution observations of the faintest sources, both extragalactic and galactic
- Sensitive timing and spectroscopy to thermal emission and iron lines
- Scaled up version of NICER concentrators with NICER SDDs
 - Focal length of 3 m and 2’ focal spots for enhanced throughput >2.5 keV
 - Inexpensive Foil optics: large areas w/ low background
 - Energy resolution: 85-175 eV FWHM
 - Effective area @ 1.5 keV: >2.0 m²

Baseline is 80 XRCA units
Large Area Detector

- High time resolution and good energy resolution over the 2-30 keV range
 - Best sensitivity to QPOs; most prominent in harder X-rays
 - Sensitive to non-thermal emission and Compton hump
- SDDs and lightweight microcapillary plate collimators developed for ESA’s LOFT M3 & M4.
 - Energy resolution: 200–500 eV FWHM
 - Effective Area @ 10 keV >5 m²

Baseline is 60 LAD modules
Wide Field Monitor

- Wide-field coded-mask imager
- Instantaneous FoV: >1/3 of sky; 50% of sky accessible to LAD
- Sensitive to transients from milliseconds to years
- LOFT SDDs and mask
- Energy resolution: 300 eV FWHM
- Identifies new transients and source states for main instruments, while monitoring long-term source behavior for a large fraction of the sky.
STROBE-X

- Huge collecting area, fast timing, and good spectral resolution, addressing fundamental questions in accretion, dense matter, black hole formation and evolution
- Based on existing technology and builds on experience with NICER and LOFT, enabling confidence in cost estimates at this early stage. Highly modular design allows easy scaling.
- Will serve a large community in a decade of time-domain astronomy with complementary capabilities to the large high spectral and spatial resolution missions

Follow us on Twitter (@STROBEXastro) and Facebook!
MoonBEAM: A Beyond LEO Gamma-ray Burst Detector for Gravitational Wave Astronomy

- **Science Goals:**
 - Improve localizations for short gamma-ray bursts (GRBs)
 - Increase sky coverage and the number of detected GRBs
 - Probe the extreme processes in cosmic collisions of compact objects
 - Facilitate multi-messenger time domain astronomy
MoonBEAM

- MoonBEAM combined with a GRB detector in LEO can improve localizations for 20+ short GRBs per year
- Improved localizations are needed to enable rapid follow-up with small field of view instruments
- Fast, timely communication is still possible compared to other planetary orbits.
MoonBEAM Possible Orbits

EM-L3 Halo

TESS-type orbit

LDRO

0.3-2.1s time difference

Distance From Earth, EM-L3 Halo
MSFC Relativistic Astrophysics Team

• Currently leading the Fermi Gamma-ray Burst Monitor
 – Recipient of the 2018 Bruno Rossi Prize in High Energy Astrophysics
 – Ongoing efforts to search for GRBs associated with gravitational waves

• Future Mission Concepts
 – STROBE-X – Probe-class mission: time domain astronomy; burst and intermediate duration gravitational wave counterparts
 – MoonBEAM – SmallSAT GRB detector in cis-lunar space to improve localizations and increase the number of detected GRBs
Thank you!

Video and image credit: NASA/GSFC
Backup
GW170817/GRB 170817A: predicted vs observed

- **Predicted**
 - Short-duration GRBs are caused by merging neutron stars and could be observed simultaneously by GBM and LIGO.
 - The aftermath of the merger produces many of the heavy elements in the universe, including gold and platinum.
 - According to Einstein’s theory of gravity, the speed of gravitational waves and the speed of light should be the same.

- **Observed**
 - GWs from merging neutron stars followed 1.7 s later by a GRB. This confirms neutron star mergers as the source of some GRBs, and that light and gravity travel at the same speed to within 1 part in a quadrillion.
 - Hours after the merger, a “kilonova” was observed, consistent with theory for the production of heavy elements.
 - >1 week later X-ray and radio emission was detected, and have continued to get brighter to this day.

- **Unexpected**
 - The GW+GRB detection was made so soon, before the LIGO/Virgo detectors have reached full sensitivity, suggesting these events may be more common than previously thought.
 - GRB 170817A was dim despite it being the closest on record, and the X-ray source is brightening instead of rapidly fading. Both raise provocative questions about the underlying physics that produces gamma-ray bursts.
 - A bright ultraviolet counterpart was detected 12 hours after the merger – not previously predicted by kilonova models.