New Developments in NASA’s Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

Yasaman Shirazi, Ph.D.
Mission Scientist – Rodent Research
ASGSR
Oct 2017, Seattle, WA

Y. Shirazi-Fard¹, S. Choi², C. Harris², C. Gong², R.J. Fisher¹, J.E. Beegle¹, K.C. Stube², K.J. Martin¹, R.G. Nevitt², R.K. Globus¹

¹ Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA
² KBRWyle, Moffett Field, CA
• Rodent Research Project’s goals:
 • Use of rodents as a translational model
 • To better understand long term adaptation to microgravity
 • To Maximize science return thru BioSpecimen Sharing
 • To expand science capabilities
Rodent Research Hardware

Rodent Transporter
- Houses mice during ascent and descent to/from ISS
- Accommodates up to 10 adult mice in each of the 2 compartments

Rodent Habitat
- Long-term housing on the ISS
- Accommodates up to 10 mice in one or separate compartments
- Continuous telemetry (%humidity, temperature)
- Video capability to monitor health and behavior

Animal Access Unit
- Attaches to Transporter and Habitat
- Used when accessing the animals for transfers, husbandry, or science procedures

Mouse Transfer Box
- Holds the animals during transfer to/from Transporter, Habitat, or MSG
- Holds animals in the MSG during science procedures
Concept of Operations

1. **Launch**
 - Transporter w/ animals (20 mice, 10 days support)

2. **Ascent**
 - Rodent Habitat w/o animals (passive transport)

3. **ISS Dock and Animal Transfer**
 - NLT Dock + 48 hours, transfer animals from Transporters to Rodent Habitats (w/ AAU). Stow Transporter for return.

4. **ISS Dock and Animal Transfer**
 - Rodent Habitat w/o animals (10 mice, 30-45 days support)

5. **On-Orbit**
 - Animal Processing System
 - Mouse Transfer Box
 - Tissue and Blood Samples
 - Stabilized samples
 - Bioprocessing and Analysis System
 - Descent
 - Cold Stowage
 - Activities may require MSG

6. **Transfer Remaining Live Animals and samples**

7. **Descent**

8. **Sample Recovery**

On-Orbit ConOps: Animal Processing System

- Dissections and DXA using the Animal Processing System and Bone Densitometer
- Cold Stowage
- Activities may require MSG

SpX

EXPRESS Racks

Empty AEM-T
Rodent Research Capabilities

- **Husbandry**
 - Supply enrichment
 - Foodbar change out
 - Video health check
 - Group housing

- **Environmental Control**
 - Telemetry for temperature and %humidity
 - Light cycle
 - Real time alerts

- **DXA scanning with anesthesia & recovery**

- **Sample Recovery and Preservation:**
 - Euthanasia & Dissections
 - Cardiac puncture
 - Blood centrifugation
 - Tissue dissection and preservation
 - Fixative swap
 - Grip strength measurements
Capabilities: Video Health Checks

• Daily health checks
 • 1hr per habitat during dark cycle
• Extended video collection for behavioral studies
New Developments: Live Animal Return

Transfer from Habitat to Transporter NET 36hrs before Dragon hatch close

~7hrs

Visual Health Check

Dragon splashdown in Pacific Ocean

~1hr

Transporter/Locker transferred to SeaVan. Telemetry sensors installed.

NASA delivers Transporter to PI designated lab (within 120 mi). Animals will be checked by PI, attending vet, and NASA science team

~3-5hrs

NASA receives payload once SeaVan at Pier

~48 hrs
New Developments: Enrichment Hut

- Enclosure for rodents to huddle and sleep in
- Supplied as a form of enrichment per animal welfare guidelines
- Made of stainless steel mesh, similar to the cage
- Facilitates animal retrieval by the crew
Maximizing Science Return

Working Microgravity is different than working in a lab on earth

- Investigators are used to processing large numbers of samples in a single day – with large teams, lots of space, no restrictions on time worked, etc.
- We work with Principal Investigators to develop an experiment flow that returns the best possible science results within the constraints for spaceflight research
 - Translates to full crew days and multiple days in a row
 - Time critical operations
- These requirements are captured in our Ground Rules and Constraints
Successfully completed 6 missions to date.
Rodent Research – 1 (SpaceX-4: Sep 21, 2014):

- Objective: Rodent Research Validation Mission

- 20 female C57BL/6J adult mice:
 - 10 (16 week old) for NASA’s validation mission
 - 10 (32 week old) for the National Lab’s science experiment

- Mission duration:
 - 33 days in microgravity (NASA’s Validation)
 - 18 days in microgravity (Novartis)

- Euthanized and dissections performed. Samples returned on SpX5 (Feb 2015)
- Crew times: 75 hrs

- BSP dissection:
 - First thaw: April 2015
 - Second thaw: March 2016
Rodent Research – 2 (SpaceX-6: April 14, 2015):

- Objective: Evaluate muscle atrophy in microgravity and identify molecular pathways and targets that could be used to develop novel therapies for muscle disease.

- PI: Samuel Cadena, Ph.D. (Novartis, CASIS sponsored)

- 20 female C57BL/6J adult mice:
 - 16 weeks old at launch

- Mission duration:
 - 50 days in microgravity

- On-orbit measurements:
 - Bone densitometry scan

- Euthanized and dissections performed. Samples returned on SpX-?
- Crew times: 157 hrs
Rodent Research – 3 (SpaceX-8: April 8, 2016):

• Objective: Evaluate effects of a drug (anti-myostatin) aimed at preventing muscle loss.

• PI: Rosamund Smith, Ph.D. (Elli Lilly, CASIS sponsored)

• 20 female BALB/c adult mice:
 o 12 weeks old at launch

• Mission duration:
 o 45 days in microgravity

• On-orbit measurements:
 o Bone densitometry scan
 o Grip assessment

• Euthanized and dissections performed. Samples returned on SpX-9

• Crew times: 125 hrs

• BSP dissection:
 o September 2016

- Objective: Characterize events associated with bone healing/tissue regeneration in a microgravity environment.

- PI: Rasha Hammamieh, Ph.D. (Dept. of Defense, sponsored by US Army Center for Environmental Health Research)

- 40 male C57BL/6 adult mice – *First Male Mouse Mission*
 - 10 weeks old at launch

- Mission duration:
 - 22 days in microgravity

- Pre-flight procedure:
 - Bone defect surgery
 - DXA scan

- Euthanized and dissections performed. Samples returned on SpX-10

- Crew times: 101 hrs

- BSP dissection:
 - May 2017
Rodent Research – 5 (SpaceX-11: June 3, 2017):

- Objective: Systemic Therapy of NELL1 for Spaceflight-Induced Osteoporosis
- PI: Chia Soo, Ph.D. (UCLA, CASIS sponsored)
- 40 female BALB/c adult mice – First Live Animal Return
 - 32 weeks old at launch
 - 20 for Live Animal Return on SpX-11 (LAR)
 - 20 for ISS Terminal (IT)
- Mission duration:
 - 30 days in microgravity (LAR)
 - 60 days in microgravity (IT)
- On-orbit Operations:
 - Bone densitometry scan
 - IP injections
- Euthanized and dissections performed (20). Samples returned on SpX-12
- Crew times: 130 hrs
- BSP dissection:
 - August 2017
Rodent Research – 9 (SpaceX-12: Aug 14, 2017):

- **Objective:** Effects of Spaceflight on Musculoskeletal and Neurovascular Systems, Cerebral Arterial, Venous and Lymphatic Function: Implications for Elevated Intracranial Pressure.

- **PI:** Michael Delp, Ph.D. (Florida State University, SLPS sponsored)

- 20 male C57BL/6 adult mice – *New Habitat Configuration*
 - 10 weeks old at launch

- **Mission duration:**
 - 35 days in microgravity

- **Pre-flight measurement:**
 - Gait assessment
 - Intraocular pressure

- All 20 mice returned live on SpX-12

- **Crew times:** 25 hrs

- **BSP dissection:**
 - Flight group: September 2017
 - Control group: March 2017
Rodent Research – 6 (SpaceX-13, NET Dec 4, 2017):

- Objective: To test the efficacy of sustained subcutaneous delivery of formoterol (FMT) released from nanochannel implants in the microgravity mouse model of muscle atrophy.

- PI: Alessandro Grattoni, Ph.D. (Houston Methodist, Novartis, CASIS sponsored)

- 40 male C57BL/6 adult mice:
 - 30-40 weeks old at launch
 - 20 for Live Animal Return on SpX-13 (LAR)
 - 20 for ISS Terminal (IT)

- Mission duration:
 - ~30 (LAR) or ~60 (ISS Terminal) days in microgravity

- Pre-flight procedure:
 - Nanochannel Delivery System (nDS) implants
 - Tail vein blood collection

- Euthanasia and dissections to be performed (20). Samples to be returned on SpX-14

- Crew times: ~145 hrs

- BSP dissection:
 - TBD
Summary

• Continuously expanding science capabilities, and refining sample collection and preservation methods
• Achieving both basic and translational research objectives.
• Maximizing science return through the Biospecimen Sharing Program (BSP), sponsored by NASA’s Space Biology Program
• Increased frequency of missions allowing for more science investigations
Acknowledgements

Rodent Research Science Team
- Yi-Chun Chen
- Vandana Verma, Ph.D.
- America Reyes
- Marie Dinh

Rodent Research Mission Integration & Operations Team

Rodent Research Engineering Team

Rodent Research Crew Training

Science Working Group