Additive Construction with Mobile Emplacement:
Multifaceted Planetary Construction Materials Development

Dr. Jennifer Edmunson
Jacobs ESSCA/NASA MSFC

Mike Fiske – Jacobs ESSCA/NASA MSFC
Rob Mueller – NASA KSC
Dr. Hunain Alkhatheb – University of Mississippi
Dr. Amin Akhnoukh – East Carolina University
Heather Morris – Jacobs ESSCA/NASA MSFC
Van Townsend – Craig Technologies/NASA KSC
John Fikes – NASA MSFC
Mallory Johnston – NASA MSFC
ACME: Background

• Additive Construction
 • “The process of joining materials to create constructions from 3D model data” (Labonnote et al., 2016)
 • brick stacking, powder bed printing, and liquid/slurry/paste extrusion
 • 3D models allow fabrication of multiple types of structures – roads, berms, habitats, garages, hangars, etc. – with a single device

• Original work at Marshall Space Flight Center (MSFC) 2004-2007
 • Contour Crafting, goal of using resources found in-situ on planetary surfaces
ACME: Background

• Interest from the United States Army Corps of Engineers (USACE) since 2014
 • Use locally available cement/concrete

• Work captured, co-funded by USACE and NASA/STMD/GCDP* (2015-2017)
 • Additive Construction with Mobile Emplacement (ACME)
 • Delivery of Additive Construction of Expeditionary Structures (ACES) system
 • Materials work

• Paste type preferred
 • Little to no construction waste
 • No mortar and adhesive used between bricks
 • No formwork
 • Single feedstock delivery and emplacement system
 • Scalable

*National Aeronautics and Space Administration / Space Technology Mission Directorate / Game Changing Development Program
ACME: Background – MSFC ACME-2

- Gantry Mobility System
- Mixer
- Pump
- Accumulator (allows pump to stay on when nozzle closes for doors/windows)
- Hose
- Nozzle

Image credit: NASA
ACME: Material Constraints

- Must be compatible with additive construction technologies
 - Capable of being extruded, stacked, or emplaced layer by layer – predictably
 - Avoid warping and shrinkage during cooling/curing
 - Capable of being removed for system cleaning easily (or avoid cleaning by using a material such as thermoplastics)
 - Capable of being pumped or moved through the system without easily damaging, clogging, or abrading system components
 - Vibration
 - Capable of mixing adequately and predictably
 - Accurate dispensing and mixing ratios
 - Capable of pressurization if pumped
 - Consistency of a mix-specific viscosity
ACME: Material Constraints

- Must be composed of in-situ resources (reduce/eliminate cost of launching construction material)
 - Resources are site-specific, must know what materials are available (and have adequate simulants)
 - **LARGE** quantity of (processed) feedstock is needed

![Diagram of a rectangular structure with dimensions 2.5m x 20m x 20m, adding 0.2m wall thickness, resulting in 40m³ construction material (not including foundation or roof).]
ACME: Material Constraints

- Must be composed of in-situ resources
 - Minimize the use of water
 - Minimize the potential for deleterious chemical reactions
 - Geology varies on small scales
 - Mechanical binder for regolith grains is preferred (does not have to be a “precise mix”)
- Minimize the energy needed to mine the material
 - Use loose surface regolith when possible
- The original composition dictates:
 - Viscosity at given temperatures
 - Extrudability / workability of the mixture
 - Initial compressive strength, support subsequent layers
 - Initial set time
 - Layer adhesion
 - Resistance to aging (degradation over time)
ACME: Material Constraints

- Must be compatible with (extreme) planetary surface environments
 - Deposition
 - Gravity
 - Pressure at the surface
 - Deposition and Aging
 - Temperature swings
 - Thermal expansion
 - Aging
 - Radiation (galactic cosmic rays, solar particle events)
 - Solar wind
 - Micrometeorite bombardment
ACME: Material Constraints

• Ability to provide necessary structural integrity
 • Strength of the material (all aspects)
 • Define accurate construction tolerances for thermal expansion and vapor loss
• Layer adhesion
• Durability in the environment
• Compatibility with human activities – must not be flammable, decompose, or become toxic when exposed to H₂O, O₂, or CO₂ (unless lined)
ACME: Methodology

• Multiple materials are under study as planetary construction materials by multiple groups

• ACME materials research
 • Kennedy Space Center – focus on minimally processed regolith
 • Sintering
 • Polymer/regolith simulant mixtures (polymer to be created from the CO₂-rich atmosphere of Mars)
 • Marshall Space Flight Center - focus on cementitious materials similar to USACE
 • Planetary regolith simulant as aggregate
 • Binders such as Ordinary Portland Cement, MgO-based cements, and sodium silicate
 • Previous work with sulfur, polyethylene, and sintering
ACME: Methodology - MSFC

- **Standard mixture**
 - Ordinary Portland Cement (OPC)
 - Water
 - Navitas (rheology control)
 - Stucco mix (includes sand)

- **Simulant mixture**
 - OPC
 - Water
 - Navitas
 - Simulant (JSC Mars-1A)
 - Stucco mix (includes sand)

All aggregate used was less than 64mm in size.
Mixes captured above were used for printing.
Other mixtures were compression tested.

JSC Mars-1A, 5mm and less in size
Image credit: NASA
ACME: Methodology - MSFC

• Standard mixture defined viscosity for the ACME-2 additive construction system (between 5 and 20 Pa*s for OPC-based material)
 • Pump-able mixture
 • Retain cohesiveness
 • Smooth extruded bead

• MgO-based binder also investigated but not utilized in the ACME-2 system
 • Required constant vibration not possible in the ACME-2 feedstock delivery system
 • QUICK set-up time
ACME: Results to Date - MSFC

• Three samples were cast into 15.24cm x 15.24cm x 2.54cm molds, one was 3D printed with Mars simulant aggregate. Martian simulant JSC Mars-1A, stucco mix, OPC, Navitas, and water sample fractured during shipping to JSC prior to testing.

Martian simulant JSC Mars-1A, MgO-based cement, boric acid (set retardant) and water – sample fractured during shipping to JSC prior to testing.

Sample delaminated during shipping to JSC on a boundary between prints made on different days.

Lunar simulant JSC-1A, stucco mix, OPC, Navitas, and water.

Image credits: NASA
Hypervelocity impact tests were internally funded and performed at the White Sands Test Facility in Las Cruces, NM.

- 2.0mm Al 2017-T4 (density 2.796g/cm³) impactor, 0.17-caliber light gas gun, 0° impact angle, 1Torr N₂ in chamber during test.

- 7.0±0.2km/s velocity (approximate mean expected velocity of micrometeorites at the surface of Mars, and higher than expected velocity for bullets on Earth).

- Kinetic energy is equivalent to a micrometeorite with a density of 1g/cm³ and a diameter of 0.1mm traveling at a velocity of 10.36km/s, as well as a 9x17mm Browning Short bullet.
ACME: Results to Date - MSFC

- Image scales are comparable

Martian simulant JSC Mars-1A, stucco mix, OPC, Navitas, and water

Lunar simulant JSC-1A, stucco mix, OPC, Navitas, and water

Martian simulant JSC Mars-1A, MgO-based cement, boric acid (set retardant) and water
• Hypervelocity Impact Testing conclusions (Ordonez et al., 2017)
 • MgO-based cement, in this formulation, is not as resistant to impact as OPC
 • The projectile did not penetrate as deeply into the JSC-1A simulant-based mortar (compared to the JSC Mars-1A simulant-based mortar)
 • Smaller grain size of JSC-1A simulant
 • Makeup of JSC-1A simulant (grains not as porous as JSC Mars-1A simulant, crushed basalt versus weathered ash)
 • More deleterious reactions in the JSC Mars-1A mortar?
 • Layer adhesion issue
Grain size analysis/OPC binder - compression testing
- Standard 5.08cm cubes, 7 and 28 days
 - Initial strength related to tricalcium silicate formation
 - Ultimate strength related to dicalcium silicate formation

<table>
<thead>
<tr>
<th>Size Fraction (µm)</th>
<th>JSC Mars-1A (kPa)</th>
<th>JSC-1A (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7-Day</td>
<td>28-Day</td>
</tr>
<tr>
<td>4000-5000</td>
<td>20339</td>
<td>32218</td>
</tr>
<tr>
<td>2000-3999</td>
<td>21146</td>
<td>35584</td>
</tr>
<tr>
<td>1000-1999</td>
<td>22111</td>
<td>32675</td>
</tr>
<tr>
<td>500-999</td>
<td>21335</td>
<td>33515</td>
</tr>
<tr>
<td>250-499</td>
<td>21949</td>
<td>35633</td>
</tr>
<tr>
<td>125-249</td>
<td>25628</td>
<td>31905</td>
</tr>
<tr>
<td>63-124</td>
<td>27802</td>
<td>34326</td>
</tr>
<tr>
<td><63</td>
<td>23939</td>
<td>29967</td>
</tr>
<tr>
<td>Unsieved</td>
<td>22826</td>
<td>24383</td>
</tr>
</tbody>
</table>

- Tensile properties not measured but expected to be ~10% of compression results
ACME: Results to Date - MSFC

• One more thing...

Image credit: NASA
ACME: Next Steps

- Investigate and characterize more binders
 - Target specific proposed landing sites, generate (as accurately as possible) simulants, and mature binder fabrication and emplacement technologies
 - Test them in replicated environments
 - Thermal cycling, vacuum curing, etc.

- Establish building codes for planetary structures, and standards for additively constructed materials

- Set up an artificial neural network to help optimize these multifaceted, multifunctional materials
 - Balance between the site-specific regolith composition, extreme environments, emplacement via additive technologies, and characteristics of the final structure
ACME: Next Steps

• Optimization through trade studies / artificial neural network
 • Grain size
 • Compressive strength (including regolith load)
 • Tensile strength
 • Thermal conductivity
 • Radiation protection (materials and/or regolith shell)
 • Need for a skin/liner (pressurized?)
 • Cost to produce
 • Time to produce
 • Aging
 • Ability to be repaired
 • Ability to cure in a specific planetary environment
References and Acronyms

3D – Three-dimensional

ACES – Additive Construction of Expeditionary Structures

ACME – Additive Construction with Mobile Emplacement

ESSCA – Engineering Services and Science Capability Augmentation (contract)

GCDP – Game Changing Development Program

JSC – Johnson Space Center

KSC – Kennedy Space Center

MSFC – Marshall Space Flight Center

NASA – National Aeronautics and Space Administration

OPC – Ordinary Portland Cement

STMD – Space Technology Mission Directorate

USACE – United States Army Corps of Engineers