A gas turbine engine includes a bypass flow passage that has an inlet and defines a bypass ratio in a range of approximately 8.5 to 13.5. A fan is arranged within the bypass flow passage. A first turbine is a 5-stage turbine and is coupled with a first shaft, which is coupled with the fan. A first compressor is coupled with the first shaft and is a 3-stage compressor. A second turbine is coupled with a second shaft and is a 2-stage turbine. The fan includes a row of fan blades that extend from a hub. The row includes a number (N) of the fan blades, a solidity value (R) at tips of the blades, and a ratio of N/R that is from 14 to 16.

30 Claims, 2 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

3,021,731 A 2/1962 Stocekicht
3,194,487 A 7/1965 Tyler et al.
3,287,906 A 11/1966 McCormick
3,747,343 A 7/1973 Rosen
3,754,484 A 8/1973 Roberts
3,820,719 A 7/1974 Clark
3,892,358 A 7/1975 Gisslen
3,892,358 A 7/1975 Gisslen
3,754,484 A 8/1973 Roberts
3,747,343 A 7/1973 Rosen
4,004,095 A 12/1979 Waitz et al.
4,130,872 A 12/1978 Harloff
4,284,174 A 8/1981 Salvana et al.
4,478,551 A 10/1984 Honeycutt, Jr. et al.
4,486,146 A 12/1984 Campbell
4,696,156 A 9/1987 Kerr et al.
4,886,146 A 12/1984 Salvana et al.
4,979,362 A 12/1990 Verdure, Jr.
5,141,400 A 8/1992 Murphy et al.
5,433,674 A 7/1995 Sheridan et al.
5,466,198 A 11/1995 McKibbin et al.
5,677,060 A 10/1997 Terentieva et al.
5,915,917 A 6/1999 Everker et al.
5,975,841 A 11/1999 Lindemuth et al.
6,004,095 A 12/1999 Waitz et al.
6,223,668 B1 5/2001 Sheridan
6,315,815 B1 11/2001 Spadaccini et al.
6,318,070 B1 11/2001 Rey et al.
6,382,905 B1 5/2002 Chakor et al.
6,517,341 B1 2/2003 Ueki et al.
7,021,042 B2 4/2006 Law
7,107,756 B2 9/2006 Roll --------------- F02K 3/06
7,238,580 B2 2/2008 Lee et al.
7,374,403 B2 5/2008 Decker et al.
7,662,059 B2 2/2010 McCune
7,770,377 B2 8/2010 Roll
7,806,651 B2 10/2010 Kennesohl et al.
7,824,305 B2 11/2010 Duong et al.
8,205,432 B2 6/2012 Sheridan

FOREIGN PATENT DOCUMENTS

GB 2041090 9/1980
GB 2426792 12/2006
WO 2015034630 3/2015
WO 2015047511 4/2015

OTHER PUBLICATIONS

References Cited

References Cited

OTHER PUBLICATIONS

Deposition Transcript of Reza Abhari, Ph.D. General Electric
Company, Petitions vs. United Technologies Corporation, Patent
Pratt & Whitney (2014). Evaluation of ARA catalytic
hydrothermolysis (CH) fuel: Continuous lower energy, emissions
1-17.
Declaration of Dr. K. Mathioudakis. In re U.S. Pat. No. 9,121,412.
Benzakein, M.J. (2001). Propulsion strategy for the 21st cen-
Mattingly, J.D. (2006). Elements of propulsion gas turbines and
29, 70.
1-505.

Guynn, M.D., Berton, J.J., Fisher, K., Haller, W.J., Tong, M.T. &
Thurman, D.R. (2009). Analysis of turbofan design options for an
advanced single-aisle transport aircraft. AIAA 2009-6942. Sep. 21-23,
turbofan engine. Journal of Engineering for Gas Turbine Engines and
Guynn, M.D., Berton, J.J. & Haller, W.J. (2013). Advanced single-
aisle transport propulsion design options revisited. AIAA 2013-
Coy, Peter. The little gear that could reshape the jet engine: A simple
idea’s almost 30-year, $10 billion journey onto the aircraft main-
28-31.
Warwick, G. (2007). Civil engines: Pratt & Whitney gears up for the
2016 from: https://www.flightglobal.com/news/articles/civil-en-
gines-pratt-amp-whitney-gears-up-for-the-future-with-219989/.

* cited by examiner
FIG. 2
EFFICIENT, LOW PRESSURE RATIO
PROPELLOR FOR GAS TURBINE ENGINES

CROSS REFERENCE TO RELATED APPLICATIONS

The present disclosure is a continuation of U.S. application Ser. No. 13/176,365, filed July 5, 2011.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under contract number NAS3-01138 awarded by NASA. The government has certain rights in the invention.

BACKGROUND

This disclosure relates to gas turbine engines and, more particularly, to an engine having a geared turbofan architecture that is designed to efficiently operate with a high bypass ratio and a low pressure ratio.

The propulsive efficiency of a gas turbine engine depends on many different factors, such as the design of the engine and the resulting performance debits on the fan that propels the engine. As an example, the fan rotates at a high rate of speed such that air passes over the blades at transonic or supersonic speeds. The fast-moving air creates flow discontinuities or shocks that result in irreversible propulsive losses. Additionally, physical interaction between the fan and the air causes downstream turbulence and further losses. Although some basic principles behind such losses are understood, identifying and changing appropriate design factors to reduce such losses for a given engine architecture has proven to be a complex and elusive task.

SUMMARY

An exemplary gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. The row includes no more than 20 of the propulsor blades.

In another aspect, a gas turbine engine includes a core flow passage and a bypass flow passage. A propulsor is arranged at an inlet of the bypass flow passage and core flow passage. The propulsor includes a hub and a row of propulsor blades that extend from the hub. The row includes no more than 20 of the propulsor blades and the bypass flow passage has a design pressure ratio of approximately 1.3-1.55 with regard to an inlet pressure and an outlet pressure of the bypass flow passage.

An exemplary propulsor for use in a gas turbine engine includes a rotor having a row of propulsor blades that extends radially outwardly from a hub. Each of the propulsor blades extends radially between a root and a tip and in a chord direction between a leading edge and a trailing edge to define a chord dimension at the tip of each propulsor blade. The row of propulsor blades defines a circumferential pitch with regard to the tips. The row of propulsor blades has a solidity value defined as the chord dimension divided by the circumferential pitch. The row also includes a number of the propulsor blades that is no greater than 20 such that a ratio of the number of propulsor blades to the solidity value is from 9 to 20.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

FIG. 1 is a schematic cross-section of a gas turbine engine.

FIG. 2 is a perspective view of a fan section of the engine of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 may be a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engine architectures may include a single-spool design, a three-spool design, or an open rotor design, among other systems or features.

The fan section 22 drives air along a bypass flow passage B while the compressor section 24 drives air along a core flow passage C for compression and communication into the combustor section 26. Although depicted as a turbofan gas turbine engine, it is to be understood that the concepts described herein are not limited to use with turbofans and the teachings may be applied to other types of gas turbine engines.

The engine 20 includes a low speed spool 30 and high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. The low speed spool 30 generally includes an inner shaft 40 that is coupled with a propulsor 42, a low pressure compressor 44 and a low pressure turbine 46. The low pressure turbine 46 drives the propulsor 42 through the inner shaft 40 and a gear assembly 48, which allows the low speed spool 30 to drive the propulsor 42 at a different (e.g. lower) angular speed.

The high speed spool 32 includes an outer shaft 50 that is coupled with a high pressure compressor 52 and a high pressure turbine 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A, which is collinear with their longitudinal axes.

A core airflow in core flow passage C is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed with the fuel in the combustor 56, and then expanded over the high pressure turbine 54 and low pressure turbine 46. The turbines 54, 46 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.

As shown, the propulsor 42 is arranged at an inlet 60 of the bypass flow passage B and core flow passage C. Air flow through the bypass flow passage B exits the engine 20 through an outlet 62 or nozzle. For a given design of the propulsor 42, the inlet 60 and the outlet 62 of the engine 20 define a design pressure ratio with regard to an inlet pressure at the inlet 60 and an outlet pressure at the outlet 62 of the bypass flow passage B. As an example, the design pressure ratio may be determined based upon the stagnation inlet pressure.
pressure and the stagnation outlet pressure at a design rotational speed of the engine 20. In that regard, the engine 20 may optionally include a variable area nozzle 64 within the bypass flow passage B. The variable area nozzle 64 is operative to change a cross-sectional area 66 of the outlet 62 to thereby control the pressure ratio via changing pressure within the bypass flow passage B. The design pressure ratio may be defined with the variable area nozzle 64 fully open or fully closed.

Referring to FIG. 2, the propulsor 42, which in this example is a fan, includes a rotor 70 having a row 72 of propulsor blades 74 that extend circumferentially around a hub 76. Each of the propulsor blades 74 extends radially outwardly from the hub 76 between a root 78 and a tip 80 and in a chord direction (axially and circumferentially) between a leading edge 82 and a trailing edge 84. A chord dimension (CD) is a length between the leading edge 82 and the trailing edge 84 at the tip of each propulsor blade 74. The row 72 of propulsor blades 74 also defines a circumferential pitch (CP) that is equivalent to the arc distance between the tips 80 of neighboring propulsor blades 74.

As will be described, the example propulsor 42 includes a number (N) of the propulsor blades 74 and a geometry that, in combination with the architecture of the engine 20, provides enhanced propulsive efficiency by reducing performance debits of the propulsor 42.

In the illustrated example, the number N of propulsor blades in the row 72 is no more than 20. In one example, the propulsor 42 includes 18 of the propulsor blades 74 uniformly circumferentially arranged about the hub 76. In other embodiments, the number N may be any number of blades from 12-20.

The propulsor blades 74 define a solidity value with regard to the chord dimension CD and the circumferential pitch CP. The solidity value is defined as a ratio (R) of CD/CP (i.e., CD divided by CP). In embodiments, the solidity value of the propulsor 42 is between 1.0 and 1.3. In further embodiments, the solidity value is from 1.1 to 1.2.

Additionally, in combination with the given example solidity values, the engine 20 may be designed with a particular design pressure ratio. In embodiments, the design pressure ratio may be between 1.3 and 1.55. In a further embodiment, the design pressure ratio may be between 1.3 and 1.4.

The engine 20 may also be designed with a particular bypass ratio with regard to the amount of air that passes through the bypass flow passage B and the amount of air that passes through the core flow passage C. As an example, the design bypass ratio of the engine 20 may nominally be 12, or alternatively in a range of approximately 8.5 to 13.5.

The propulsor 42 also defines a ratio of N/R. In embodiments, the ratio N/R is from 9 to 20. In further embodiments, the ratio N/R is from 14 to 16. The table below shows additional examples of solidity and the ratio N/R for different numbers of propulsor blades 74.

<table>
<thead>
<tr>
<th>Number of Blades (N)</th>
<th>Solidity</th>
<th>Ratio N/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.0</td>
<td>12.0</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>14.0</td>
</tr>
<tr>
<td>16</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>18</td>
<td>1.0</td>
<td>18.0</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

The disclosed ratios of N/R enhance the propulsive efficiency of the disclosed engine 20. For instance, the disclosed ratios of N/R are designed for the geared turbo fan architecture of the engine 20 that utilizes the gear assembly 48. That is, the gear assembly 48 allows the propulsor 42 to rotate at a different, lower speed than the low speed spool 30. In combination with the variable area nozzle 64, the propulsor 42 can be designed with a large diameter and rotate at a relatively slow speed with regard to the low speed spool 30. A relatively low speed, relatively large diameter, and the geometry that permits the disclosed ratios of N/R contribute to the reduction of performance debits, such as by lowering the speed of the air or fluid that passes over the propulsor blades 74.

Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments. The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.

What is claimed is:

1. A gas turbine engine comprising:
 a bypass flow passage and a core flow passage, the bypass flow passage including an inlet and defining a bypass ratio in a range of approximately 8.5 to 13.5 with regard to flow through the bypass flow passage and flow through the core flow passage; a fan arranged within the bypass flow passage; a first shaft and a second shaft; a first turbine coupled with the first shaft, the first shaft coupled with the fan, wherein the first turbine is a 5-stage turbine; a first compressor coupled with the first shaft, wherein the first compressor is a 3-stage compressor; and a second turbine coupled with the second shaft, wherein the second turbine is a 2-stage turbine; wherein the fan includes a hub and a row of fan blades that extend from the hub, and the row includes a number (N) of the fan blades, a solidity value (R) at tips of the
fan blades, and a ratio of N/R that is from 14 to 16 to manage the propulsive losses at the lower speed.

2. The gas turbine engine as recited in claim 1, wherein the number (N) of the fan blades is 18.

3. The gas turbine engine as recited in claim 2, wherein the bypass flow passage includes an inlet and an outlet defining a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being approximately 1.3 to 1.55.

4. The gas turbine engine as recited in claim 3, wherein the design pressure ratio is approximately 1.55.

5. The gas turbine engine as recited in claim 4, wherein the first shaft and the second shaft are concentric, the first shaft being an inner shaft and the second shaft being an outer shaft.

6. The gas turbine engine as recited in claim 5, wherein the bypass ratio is nominally 12.

7. The gas turbine engine as recited in claim 6, wherein each of the fan blades is fixed in position between the hub and the tip.

8. The gas turbine engine as recited in claim 1, wherein the bypass flow passage includes an inlet and an outlet defining a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being between 1.3 and 1.4.

9. The gas turbine engine as recited in claim 8, wherein each of the fan blades is fixed in position between the hub and the tip.

10. A gas turbine engine comprising:
 a bypass flow passage and a core flow passage, the bypass flow passage defining a bypass ratio in a range of approximately 8.5 to 13.5 with regard to flow through the bypass flow passage and flow through the core flow passage;
a fan arranged within the bypass flow passage;
a first shaft and a second shaft, wherein the first shaft and the second shaft are concentric, the first shaft being an inner shaft and the second shaft being an outer shaft;
a first turbine coupled with the first shaft, the first shaft coupled with the fan, wherein the first turbine is a 5-stage turbine;
a first compressor coupled with the first shaft, wherein the first compressor is a 3-stage compressor; and
a second turbine coupled with the second shaft, wherein the second turbine is a 2-stage turbine;
wherein the fan includes a hub and a row of fan blades that extend from the hub, and the row includes a number (N) of the fan blades, the number (N) being 18, a solidity value (R) at tips of the fan blades that is from 1.0 to 1.2, and a ratio of N/R that is from 15.0 to 18.0.

11. The gas turbine engine as recited in claim 10, wherein the bypass flow passage includes an inlet and an outlet defining a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being approximately 1.3 to 1.55.

12. The gas turbine engine as recited in claim 11, wherein the solidity value (R) at the tips of the fan blades is from 1.0 to 1.1.

13. The gas turbine engine as recited in claim 12, wherein the ratio of N/R is from 16.4 to 18.0.

14. The gas turbine engine as recited in claim 12, further comprising a variable area nozzle, wherein the design pressure ratio is achieved in operation with the variable area nozzle fully open.

15. The gas turbine engine as recited in claim 13, wherein the bypass ratio is nominally 12.

16. The gas turbine engine as recited in claim 13, wherein the design pressure ratio is between 1.3 and 1.4.

17. The gas turbine engine as recited in claim 11, wherein the solidity value (R) at the tips of the fan blades is from 1.1 to 1.2.

18. The gas turbine engine as recited in claim 17, wherein the ratio of N/R is from 15.0 to 16.4.

19. The gas turbine engine as recited in claim 18, wherein the design pressure ratio is approximately 1.55.

20. The gas turbine engine as recited in claim 19, wherein the bypass ratio is nominally 12.

21. The gas turbine engine as recited in claim 19, wherein the design pressure ratio is between 1.3 and 1.4.

22. The gas turbine engine as recited in claim 20, wherein each of the fan blades is fixed in position between the hub and the tip.

23. A gas turbine engine comprising:
 a bypass flow passage and a core flow passage, the bypass flow passage defining a bypass ratio in a range of approximately 8.5 to 13.5 with regard to flow through the bypass flow passage and flow through the core flow passage, and wherein the bypass flow passage includes an inlet and an outlet defining a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being approximately 1.3 to 1.55;
a fan arranged within the bypass flow passage;
a first shaft and a second shaft, wherein the first shaft and the second shaft are concentric, the first shaft being an inner shaft and the second shaft being an outer shaft;
a first turbine coupled with the first shaft, the first shaft coupled with the fan;
a first compressor coupled with the first shaft, wherein the first compressor is a 3-stage compressor; and
a second turbine coupled with the second shaft, wherein the second turbine is a 2-stage turbine;
wherein the fan includes a hub and a row of fan blades that extend from the hub, and the row includes a number (N) of the fan blades, the number (N) being 18, a solidity value (R) at tips of the fan blades that is from 1.0 to 1.1, and a ratio of N/R that is from 16.4 to 18.0.

24. The gas turbine engine as recited in claim 23, wherein the design pressure ratio is approximately 1.55.

25. The gas turbine engine as recited in claim 24, wherein the bypass ratio is nominally 12.

26. The gas turbine engine as recited in claim 24, wherein the design pressure ratio is between 1.3 and 1.4.

27. The gas turbine engine as recited in claim 25, wherein each of the fan blades is fixed in position between the hub and the tip.

28. A gas turbine engine comprising:
 a bypass flow passage and a core flow passage, the bypass flow passage defining a bypass ratio in a range of approximately 8.5 to 13.5 with regard to flow through the bypass flow passage and flow through the core flow passage, and wherein the bypass flow passage includes an inlet and an outlet defining a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being approximately 1.55;
a fan within the bypass flow passage;
a first shaft and a second shaft, wherein the first shaft and the second shaft are concentric, the first shaft being an inner shaft and the second shaft being an outer shaft; a first turbine coupled with the first shaft, the first shaft coupled with the fan; a first compressor coupled with the first shaft, wherein the first compressor is a 3-stage compressor; and a second turbine coupled with the second shaft, wherein the second turbine is a 2-stage turbine; wherein the fan includes a hub and a row of fan blades that extend from the hub, and the row includes a number (N) of the fan blades, the number (N) being 18, a solidity value (R) at tips of the fan blades that is from 1.0 to 1.1, and a ratio of N/R that is from 16.4 to 18.0.

29. The gas turbine engine as recited in claim 28, wherein each of the fan blades is fixed in position between the hub and the tip.

30. The gas turbine engine as recited in claim 28, wherein the first turbine is a 5-stage turbine.