Inner Magnetospheric Physics

Dennis Gallagher, PhD
NASA Marshall Space Flight Center
Dennis.gallagher@nasa.gov
Inner Magnetosphere Effects

- Historical Background
- Main regions and transport processes
 - Ionosphere
 - Plasmasphere
 - Plasma sheet
 - Ring current
 - Radiation belt
- Geomagnetic Activity
 - Storms
 - Substorm
- Models
Historical Background: Space in 1950

- Exosphere
- Heavyside layer: 10,000 km
- Shell of Solar Electrons
Historical Background

Whistlers revealed unexpected plasma

1952
L. R. Owen Storey
Cavendish Laboratory
University of Cambridge

L. R. O. Storey, Phil. Trans. R. Soc. Lond. A 1953 246 113-141; DOI: 10.1098/rsta.1953.0011. Published 9 July 1953
Historical Background

Explorer 1
January 31, 1958

William Pickering
James van Allen
Wernher von Braun

Ionosphere

Photoionization

\[O + h\nu = O^+ + e^- \]

- Ionosphere: ionized portion of upper atmosphere
 - Extends from around 60 to beyond 1000 km
 - Completely encircles the Earth
 - Main Source: photoionization of neutrals
 - Other production processes may dominate in certain ionospheric regions
 - Loss Mechanism: ionospheric outflow

Main regions and transport processes
Ionosphere outflow

- Main cause
 - Ambipolar electric field
 - Pressure gradients
 - Mirror force due to gyration of charged particles

- Polar wind: Ionospheric loss at polar latitude
 - Along essentially open geomagnetic field lines

- At mid-latitudes the plasma may bounce to the conjugate ionosphere or become the plasmasphere

Main regions and transport processes
Plasmasphere Formation: Diffusive Equilibrium

\[H_j = \left(\frac{kT_i}{m_j g} \right) \left(1 - \frac{m_a T_e}{m_j T_t} \right)^{-1} \]

Titheridge (1972)

- \(H_j \) = scale height
- \(k \) = Boltzmann constant
- \(m_j \) = \(j \)th ion mass
- \(g \) = gravitational constant
- \(m_a \) = mean ion mass
- \(T_e \) = electron temperature
- \(T_t = T_i + T_e \) total temperature

Source: Webb and Essex, Modelling the Plasmasphere
In the Late 50s, ground-based measurements revealed the plasma flow pattern in the polar and auroral ionosphere:
- Anti-sunward flow over the polar cap and
- Return flow equatorward of the auroral oval

In 1959 Gold introduced the term convection—resemblance to thermally driven flow cells.
Solar wind dynamo

- Highly conducting plasma in the solar wind flows across polar geomagnetic field lines
 - Induces an electric dynamo field
 - Frozen-in flux concept

Main regions and transport processes
Reconnection

• If the polar geomagnetic field lines are open
 – The electric field produces an anti-sunward ExB drift of solar wind and magnetospheric plasma across the polar cap
 – Reconnection occurs down tail
 – Closed geomagnetic field lines flow back towards Earth at lower latitudes

Main regions and transport processes
Plasma sheet

- Plasma sheet: population of ionospheric and solar wind particles being accelerated Earthward
- Neutral current sheet: large-scale current flow from dawn to dusk across the plasma sheet
 - Separates the two regions of oppositely directed magnetic field in the magnetotail
 - Accelerates particles towards Earth
- Direct access to night side auroral oval
 - Can collide with ionosphere producing aurora

Main regions and transport processes
Adiabatic Invariants

- Energetic plasma near the center of the plasma sheet gyrates closer to the Earth
 - Become trapped on closed dipole like field lines
 - Encounter increasing magnetic field strength
 - Bounce between hemispheres

- Gradient and curvature drift
 - Divert ions and electrons in opposite directions
 - Form the ring current and radiation belts

\[\mu = \frac{W_\perp}{B} = \frac{mv_\perp^2}{2B} \]

Main regions and transport processes
Ring Current

• Hot (1-400 keV) tenuous (1-10s cm\(^{-3}\))
• Diamagnetic current produced by motion of plasma trapped in the inhomogeneous geomagnetic field
 – Torus-shaped volume extending from \(~3\) to \(8\ \text{R}_\text{E}\)
 – Main Source: plasma sheet particles
 – Loss Mechanisms: charge exchange, coulomb collisions, atmospheric loss, pitch angle (PA) diffusion, and escape from magnetopause

\[
\Delta B(r) = \frac{\mu_0}{4\pi} \int_V \frac{J(r') \times (r-r')}{|r-r'|^3} \, dr'
\]
Radiation Belt

- Very Hot (100s keV - MeV)
- Extremely tenuous: <<1 cm$^{-3}$
 - Outer belt: very dynamic region
 - Mostly elections located at 3-6 R$_E$
 - Inner belt: fairly stable population
 - Protons, electrons and ions at 1.5-2 R$_E$
- Source: injection and energization events following geomagnetic storms
- Loss Mechanisms: Coulomb collisions, magnetopause shadowing, and PA diffusion

Main regions and transport processes
Plasmasphere

- Cool (<10 eV)
- High density (100s-1000s cm\(^{-3}\))
- Co-rotating plasma
 - Torus-shaped, extends to 4-8 \(R_E\)
 - Plasmapause: essentially the boundary between co-rotating and convecting plasma
- Main Source: the ionosphere
- Loss Mechanism: plasmaspheric erosion and drainage plume

Main regions and transport processes
Geomagnetic storms

- Large (100s nT)
- Prolonged (days)
- Magnetospheric disturbances
 - Caused by variations in the solar wind
 - Related to extended periods of large southward interplanetary magnetic field (-IMF Bz)
 - Increasing the rate of magnetic reconnection
 - Enhancing global convection
Geomagnetic storms

- Enhanced convection
 - Increased rate of injection into the ring current
 ✤ The ring current then expands earthward
 ✤ Induced current can reduce the horizontal component of the geomagnetic field (100s nT)
 ✪ Used to calculate Dst

Geomagnetic Activity

Halloween Storm of 2013

October 2003

Dst (Final)

WDC for Geomagnetism, Kyoto

Ion Partial Pressure (nPa)
Plasmaspheric Plumes

- Enhanced convection also causes the co-rotating plasmaspheric material to surge sunward
 - Decreasing the night-side plasmapause radius
 - Extending the dayside plasmapause radius
- Creates a plume extending from 12 to 18 MLT
- For continued enhanced convection less material remains to feed the plume and it narrows in MLT
 - Dusk edge remains almost stationary
 - Western edge moves eastward

Geomagnetic Activity
Substorms

- A relatively short (hours) period of increased energy input and dissipation into the inner magnetosphere
 - Events may be isolated or occur during a storm
 - Associated with a flip from northward to southward IMF Bz
- Increased rate of reconnection
- Increased flow in magnetospheric boundary layer
- Energy accumulates in the near-Earth tail

Geomagnetic Activity
Substorms

- Additional magnetic flux in the tail lobes causes the cross-tail current sheet thickness to decrease
 - When the current sheet thickness reaches its threshold reconnection occurs
 - The cross-tail current is disrupted
- The substorm current wedge closes the cross-tail current through the ionosphere
- Particle precipitation increases Auroral activity

Geomagnetic Activity
Models – Empirical: IRI

IRI/CCIR NmF2 at 10UT on day 183

IRI TEC at 10UT on day 183

IRI/CCIR hmF2 at 10UT on day 183

IRI–2001 Model

Generated at Local Time 02–Jul–2011 06:00:29 @ Millstone
Models – Empirical: GCPM
Models – LFM Model

(Multi-Fluid Lyon-Fedder-Mobarry MHD)

Lyon, Fedder, Mobarry, DOI: 10.1016/j.jastp.2004.03.020
Through the Coordinated Community Modeling Center, NASA/GSFC
Coupling Models