Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

Terminal Operations HITL 1B
Primary Results
Presented to: RTCA SC-228 WG-1

27 March, 2018
Objective

• **Purpose:** leverage the lessons learned from the Foundational Terminal Operations human-in-the-loop (HITL) simulation to test a DAA system better suited to the terminal environment

• **Objectives:**
 – Implement two candidates for a terminal area DAA well clear (DWC) definition
 – Further investigate the efficacy of the DAA Corrective alert in the terminal area
 – Compare pilot and system performance to previous studies
TOPS 1 Results Summary

- Phase 1 DWC definition resulted in an exceedingly high number of alerts in the terminal area
 - As a result pilots had a hard time judging when a maneuver was necessary to avoid high-severity LoDWC
 - 17 > 50% SLoWC & 6 > 70% SLoWC
 - No SLoWC above 30% in PT6

- The DAA Corrective alert was shown to be less useful in the terminal area
 - Best performance seen in configuration with DAA Warning but no Corrective
 - Pilots rarely coordinated with tower before maneuvering against intruders
 - Intruders often spent < 15sec as Corrective before transitioning to Warning

- Encounters that occurred with ownship established on final were the most likely to lead to severe losses of DWC
• 2 x 2 Mixed-Factorial Design
 – DWC Candidate (Within-Subjects):

<table>
<thead>
<tr>
<th></th>
<th>No Tau</th>
<th>Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Threshold*</td>
<td>1500ft</td>
<td>1500ft</td>
</tr>
<tr>
<td>Vertical Threshold</td>
<td>450ft</td>
<td>450ft</td>
</tr>
<tr>
<td>modTau</td>
<td>N/A</td>
<td>15sec</td>
</tr>
</tbody>
</table>

*HMD in Tau definition

– Alerting Configuration (Between-Subjects)
 • No Corrective = No DAA Corrective alert or guidance, all other alerting/guidance remains
 • With Corrective = Full Phase 1 MOPS DAA alerting and guidance structure (Class I)
Experimental Design

No Corrective

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Time to Hazard Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning Alert</td>
<td>30sec</td>
</tr>
<tr>
<td></td>
<td>Preventive Alert</td>
<td>45sec</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Includes Only Warning Guidance and Regain DWC Guidance

With Corrective

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Time to Hazard Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning Alert</td>
<td>30sec</td>
</tr>
<tr>
<td></td>
<td>Corrective Alert</td>
<td>45sec</td>
</tr>
<tr>
<td></td>
<td>Preventive Alert</td>
<td>45sec</td>
</tr>
<tr>
<td></td>
<td>Guidance Traffic</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Remaining Traffic</td>
<td>N/A</td>
</tr>
</tbody>
</table>

All Remain & Regain DWC Guidance
Alerting Criteria for DWC Candidates

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Pilot Action</th>
<th>No Tau DWC Criteria</th>
<th>Tau DWC Criteria</th>
<th>Time to Loss of DWC</th>
<th>Aural Alert Verbiage</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Symbol]</td>
<td>Warning Alert</td>
<td>• Notify ATC as soon as practicable after taking action</td>
<td>Horz = 1500ft</td>
<td>DMOD = 1500ft</td>
<td>30 sec</td>
<td>“Traffic, Maneuver Now” x2</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Corrective Alert</td>
<td>• Coordinate with ATC to determine an appropriate maneuver</td>
<td>Horz = 1500ft</td>
<td>DMOD = 1500ft</td>
<td>45 sec</td>
<td>“Traffic, Avoid”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Preventive Alert</td>
<td>• On current course, corrective action should not be required</td>
<td>Horz = 1500ft</td>
<td>DMOD = 1500ft</td>
<td>45 sec</td>
<td>“Traffic, Monitor”</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Guidance Traffic</td>
<td>• Traffic generating guidance bands outside of current course</td>
<td>Associated w/</td>
<td>Associated w/</td>
<td>X</td>
<td>N/A</td>
</tr>
<tr>
<td>![Symbol]</td>
<td>Remaining Traffic</td>
<td>• Traffic within sensor range</td>
<td>Within surveillance field of regard</td>
<td>Within surveillance field of regard</td>
<td>X</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTES:
- Corrective alert only present in *With Corrective* alerting configuration
- No sensor uncertainty was modeled
- Alerting criteria was identical between DWC Candidates
• Generic MQ-9 Reaper
 – Speed:
 • Cruise: 110 knots
 • Landing: 90-110 knots
 • Min: 70 knots
 – Default Climb/Descent Rate:
 • 1000ft/min
 – Roll:
 • Max: +/- 20°
 • Rate: 5°/sec
 – Pitch:
 • Max: +/- 10°
 • Rate: 1°/sec
Ground Control Station (GCS)

- Ground control station (GCS) contains:
 1. **Viewer Tool** – contains approach plate & airport facility directory (AFD)
 2. **Tactical Situation Display (TSD)** – DAA information and vehicle control interfaces
 3. **Right Panel** – landing checklist and additional info
 4. **Voice communication panel** – touchscreen, transmit/receive on select freqs.

Vigilant Spirit Control Station (AFRL)
Sonoma County Airport

- Primary = Rwy14
- Runway 14/32
 - Length = 6000ft x 150ft
 - RNAV (GPS)
- Elevation = 129ft
- Traffic Pattern = 1150ft
- Downwind offsets:
 - Left = ~1.5nm
 - Right = ~0.5nm
- Runway 20/02
 - Not used

Traffic Pattern Altitude = 1150ft
3NM (WP1) to RW14 (WP2) = 3nm
RW14 (WP2) to RW32 (WP3) = 1nm
• Pseudo-pilots monitored and managed all manned traffic (IFR & VFR)
 – Multi-Aircraft Control System (MACS) software suite
• Air Traffic Control managed UAS and manned traffic
 – Tower controller managing Santa Rosa (KSTS)
 – Center controller managing Oakland Center (ZOA 40/41)
 – Sector traffic modeled using real sector activity and data
• All participants communicated via push-to-talk headsets
 – KSTS Tower frequency: 118.50
 – Oakland Center frequency: 127.80
 – KSTS ATIS: 120.55
Training on DAA System

• Pilots trained first on the ground control station followed by training on the DAA system
 – Trained on the meaning of each alert/guidance type in their given configuration
 – Practice en-route scenario flown with conflicts & ATC in-the-loop
• Pilots trained last on how to fly the given approach
 – 2 practice approaches flown, one with a scripted conflict
• Informed that a DAA system has been specifically developed to support terminal operations
 – Told the hazard zone was 1500ft x 450ft (did not explain tau component)

- Told to use the DAA system to maintain DAA well clear from traffic in the terminal environment (i.e., expected to utilize the alerts/guidance)
Scenario Design

• Participants flew 2 types of approaches into Santa Rosa Rwy 14 under Instrument Flight Rules (IFR)
 – Instrument (RNAV GPS) Approach
 – “Visual” Approach

• Common across scenarios:
 – Start in Vigilant Spirit’s HOLDS mode & in Oakland center airspace
 – Coordinate transfer to KSTS Tower
 – Perform checklist actions as able (e.g., check ATIS, brief approach)
 – Fly final in Vigilant Spirit’s NAV mode (enables glide slope)
Scenario Design

Instrument Approach Notes:
- Final approach coarse offset 15°
- **Missed approach procedures** = climb to 5000ft, fly runway heading (143°)

“Visual” Approach Notes:
- Airport “in sight” 10-12nm from runway
- Line up for 3nm final stabilized approach
- Traffic pattern @ 1150ft
- **Go-around** = climb to pattern alt (1150ft)
• Pilots flew 4 trials per day (2 Instrument & 2 Visual)
• 4 approaches flown per trial (= ~45min per trial)
• The following encounter types occurred every trial:
 • **Turn Into** = traffic blunders into UA on final and will result in NMAC without UAS pilot response [1 per trial]
 • **Turn In Front** = traffic turns in front of UAS with sufficient separation (~1.5-2nm) to land safely (the turn is coordinated w/ Tower) [1 per trial]
 • **Unscripted** = no encounter is scripted to occur but traffic expected to be on downwind as UAS is on final [2 per trial]

• Encounter type breakdown:

<table>
<thead>
<tr>
<th></th>
<th>Blunder?</th>
<th>Predicted HorzSep @ CPA</th>
<th>Corrective or Warning Alert Desired?</th>
<th>Maneuver Desired?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Into</td>
<td>Yes</td>
<td>~0nm</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Turn In Front</td>
<td>No</td>
<td>~1.5-2nm</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Unscripted</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Participants

- 16 UAS pilot participants (avg. age = 33 years)
 - All IFR rated with manned & unmanned flying experience
 - **Manned experience** = avg. 1000 civilian flight hours, 1600 military flight hours
 - **Unmanned experience** = avg. 500 civilian flight hours, 700 military flight hours
- 2 retired tower controllers served as tower controller confederates
- 1 ATC SME served as center controller confederate
- 4 current general aviation pilots served as manned traffic confederates
RESULTS
DAA ALERTING AND MEASURED RESPONSE
• 32 total alerts desired per DWC candidate
 = 16 [pilots] * 2 [trials per pilot] * 1 [Turn Into encounter per trial])
 • There was also 1 Turn In Front encounter per trial
• 215 different intruders registered (in truth) as a DAA alert
 – “Truth” alerts = all alerts captured by the DAA system, across all trials and conditions (ignores alert configuration variable)
• The Tau DWC candidate alerted more frequently overall, a consequence of disproportionately alerting to Unscripted traffic
• More Corrective (truth) alerts issued when Tau DWC definition used
 – No Tau = 42 total
 – Tau = 75 total

• Majority of these Corrective alerts lasted less than 6sec
 – NOTE: 4sec is min. alert duration
 – Most did not progress to a Warning alert
 • No Tau = 17/22 (77%)
 • Tau = 44/53 (83%)

• Avg. Corrective alert duration
 – No Tau = 6.9sec
 • Median = 5sec
 – Tau = 7.5sec
 • Median = 5sec
 – Typically allot 10-15sec for ATC coordination

Corrective Alert Duration

Corrective Alert Duration – No Tau DWC Candidate

Corrective Alert Duration – Tau DWC Candidate
• Corrective (truth) alerts *least* common during the Turn Into encounter types
 – Only **13 Corrective** alerts issued against Turn Into encounters

• Correctives more common with Turn In Front & Unscripted encounters
 – Turn In Front = 30
 – Unscripted = 74

• Avg. Corrective duration
 – Turn Into = 10.8sec
 • Median = 9sec
 – Turn In Front = 9.6sec
 • Median = 5sec
 – Unscripted = 5.5sec
 • Median = 5sec
• More Warning (truth) alerts issued when Tau DWC definition used
 – No Tau = 40
 – Tau = 67
• Warnings typically lasted less than 10sec
 – However, Tau candidate led to more alerts w/ 20sec duration
• Avg. Warning alert duration
 – No Tau = 10.9sec
 • Median = 8sec
 – Tau = 12.4sec
 • Median = 8sec
• Warning (truth) alerts most common during the Turn Into encounter types
 – 58 Warning alerts issued against Turn Into encounters
• Warnings less common with Turn In Front & Unscripted encounters
 – Turn In Front = 16
 – Unscripted = 33
• Avg. Warning duration
 – Turn Into = 15.2sec
 • Median = 15sec
 – Turn In Front = 7.3sec
 • Median = 6sec
 – Unscripted = 7.5sec
 • Median = 6sec
• **Aircraft Response Time** = time to upload a maneuver to the aircraft following the onset of a Corrective or Warning alert (whichever appeared first)

• Difficult to capture response times to Corrective alerts – not visible in all conditions and (as shown earlier) they were typically of short duration

• Pilots respond slightly faster to Warning alerts in the No Tau DWC condition
 – Later alerting w/ No Tau means that the threat is often more apparent by the time an alert is issued
SEPARATION DATA
Losses of DAA Well Clear (Counts)

- Loss of DAA Well Clear (LoDWC) Criteria:
 - No Tau: Horz=1500ft, Vert=450ft, no tau
 - Tau: Horz=1500ft, Vert=450ft, 15sec modTau, 1500ft DMOD
- For reference: 82 LoDWC in TOPS 1 against similar encounters
- Tau had 10 more LoDWC than No Tau (also had larger hazard zone)
 - Tau candidate had more than twice as many LoDWC in the With Corrective alerting configuration
Losses of DAA Well Clear (Proportions)

- Proportion of losses of DAA Well Clear (LoDWC)
 - # of LoDWC / # aircraft that generated a DAA Corrective or Warning
- For All Encounters, identical proportion of LoDWC between No Tau and Tau DWC candidates
- LoDWC was most common against Turn Into encounters
 - 32 total were scripted (per condition), but one encounter failed to generate in each
 - Twice as many LoDWC with Tau candidate
- 0 LoDWC in Turn In Front encounter type
- 3 total LoDWC against Unscripted encounters (all in Tau condition)

![Proportion of LoDWC by DWC Candidate & Encounter Type](image)
• Phase 1 SLoWC = % of the **Phase 1** DAA well clear volume (which includes tau) penetrated by intruder
 – Higher % = greater penetration
• No substantial effect of DWC candidate or alerting configuration
 – No Tau & Tau DWC candidates led to

<table>
<thead>
<tr>
<th>Alerting Configuration</th>
<th>No Corrective</th>
<th>With Corrective</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tau</td>
<td>46.32</td>
<td>45.06</td>
</tr>
<tr>
<td>Tau</td>
<td>42.16</td>
<td>45.82</td>
</tr>
<tr>
<td>TOPS 1</td>
<td>26.46</td>
<td>30.36</td>
</tr>
</tbody>
</table>

Avg. Phase 1 SLoWC by DWC Candidate & Alerting Configuration

Losses of DAA Well Clear (Severity)
Losses of DAA Well Clear (Severity)

- Phase 1 SLoWC ranged overall from 20-72%
 - Highest SLoWC seen in With Corrective alerting configuration
- Fewer high-severity SLoWC with current DWC candidates than seen in TOPS 1
Actual Separation at Closest Point in LoDWC

- Closest point defined as minimum slant range *with vertical separation* < 450ft
- 22% (4/18) of LoDWC in the Tau DWC candidate came within 1500ft horizontal separation (i.e., violated the No Tau candidate criteria)
 - 4 intruders came within 1215ft horizontal separation (the lower-bound recommendation)
Closest point defined as minimum slant range with vertical separation < 450ft

Tau candidate adds approximately 1000ft additional minimum horizontal separation

Minimum vertical constant across the four conditions

No clear effect of alerting configuration

Avg. Minimum Separation by DWC Candidate, Separation Type & Alerting Configuration

<table>
<thead>
<tr>
<th>Horizontal Separation</th>
<th>Vertical Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tau</td>
<td>No Tau</td>
</tr>
<tr>
<td>Avg. Minimum Separation (f)</td>
<td>Avg. Minimum Separation (f)</td>
</tr>
<tr>
<td>1,195.08 (±944.85)</td>
<td>394.14 (±362.97)</td>
</tr>
<tr>
<td>944.85 (±1,970.10)</td>
<td>375.74 (±406.94)</td>
</tr>
<tr>
<td>1,970.10 (±1,933.58)</td>
<td>362.97 (±406.94)</td>
</tr>
<tr>
<td>1,933.58 (±375.74)</td>
<td>406.94 (±406.94)</td>
</tr>
</tbody>
</table>

Alerting Configuration
- No Corrective
- With Corrective
• Pilot responsible for LoDWC:
 – 38% (3/8) of time with No Tau candidate
 – 33% (6/18) of time with Tau candidate
 • Only one entered No Tau boundary
• Late acceleration was a disproportionate contributor to LoDWC
 – 38% (3/8) of time with No Tau
 – 56% (10/18) of time with Tau
• Proportion of LoDWC drops significantly when only including pilot-responsible

<table>
<thead>
<tr>
<th>LoDWC Causes</th>
<th>No Tau</th>
<th>Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Responsible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot Hesitation</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Insufficient Vertical Maneuver</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ineffective Maneuver</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pilot Not Responsible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Acceleration</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Intruder Mis-Flown</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>No Safe Maneuver</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>
The losses of DAA Well Clear (Causes)

- SLoWC drops substantially when only including pilot-responsible LoDWC
 - Approx. reduction of 12-16% SLoWC
 - No noticeable difference between DWC candidates
- The No Tau candidate had 0 SLoWC above 50% with pilot responsible
- The Tau candidate had 2 SLoWC above 50% & 0 SLoWC above 70% (both due to ‘pilot hesitation’)
 - For reference: TOPS 1 had 17 SLoWC above 50% & 6 SLoWC above 70% with pilot responsible

Avg. Phase 1 SLoWC by DWC Candidate & LoDWC Responsibility

Min. Separation at Closest Point in LoDWC – Pilot Responsible Only

Legend:
- No Tau
- With Tau

Legend:
- Pilot Not Responsible
- Pilot Responsible
MANEUVERING & ATC INTEROPERABILITY
• Heading changes and missed approaches (or go-arounds in visual scenario) were most likely in the Turn Into encounter type
 – Even split between heading changes and missed approaches
• Pilots relied on speed reductions almost exclusively to resolve perceived conflicts in the Turn In Front and Unscripted encounter types
 – Larger number of maneuvers seen for Tau DWC candidate, largely a result of more speed decreases against Unscripted encounters

Initial Maneuver Type by DWC Candidate, Maneuver Type & Encounter Type

<table>
<thead>
<tr>
<th>Maneuver Type x Encounter Type</th>
<th>DWC Candidate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Tau</td>
</tr>
<tr>
<td>Turn Into</td>
<td></td>
</tr>
<tr>
<td>Heading Change</td>
<td>11</td>
</tr>
<tr>
<td>Missed Approach</td>
<td>11</td>
</tr>
<tr>
<td>Speed Decrease</td>
<td>7</td>
</tr>
<tr>
<td>Temporary Climb</td>
<td>2</td>
</tr>
<tr>
<td>Turn In Front</td>
<td>0</td>
</tr>
<tr>
<td>Heading Change</td>
<td>0</td>
</tr>
<tr>
<td>Missed Approach</td>
<td>0</td>
</tr>
<tr>
<td>Speed Decrease</td>
<td>2</td>
</tr>
<tr>
<td>Temporary Climb</td>
<td>2</td>
</tr>
<tr>
<td>Unscripted</td>
<td>6</td>
</tr>
<tr>
<td>Heading Change</td>
<td>6</td>
</tr>
<tr>
<td>Missed Approach</td>
<td>1</td>
</tr>
<tr>
<td>Speed Decrease</td>
<td>1</td>
</tr>
<tr>
<td>Temporary Climb</td>
<td>3</td>
</tr>
</tbody>
</table>

Maneuver Type x Encounter Type
Pilots were most consistent when coordinating a missed approach/go-around
- Pilots fairly consistent in coordinating heading changes, slightly more so in Tau condition

Speed decreases were rarely coordinated
ATC coordination was ~20% in TOPS 1

When pilots did coordinate, it was typically after they had made their maneuver
- 67% of coordination occurred after the maneuver had been made (identical rate for missed & non-missed approach maneuvers)
Both DWC candidates appropriately tailored to the operational environment

- Substantially fewer high-severity LoDWC than TOPS 1
 - The 2 candidates had identical avg. Phase 1 SLoWC when including only pilot-responsible
 - Response times returned to expected averages (consistent with PT6)
 - Pilots did not report noticing a difference between the candidates during debrief

Tau candidate generated more alerts and more LoDWC, however:

- Tau candidate led to more LoDWC overall but they typically stayed outside of the 1500ft x 450ft boundary
- Additional alerts not found to correspond with more disruptive maneuvers – pilots relied heavily on speed reductions

Corrective alerts continue to show lack of utility in the terminal area

- Corrective duration grand mean = 7sec (median = 5sec)
- 81% (61/75) of time short duration Correctives failed to progress to a Warning
- Pilot performance in the No Corrective alerting configuration either did not differ from or was better than performance in With Corrective condition
DAA Alerting & Guidance

No Corrective

- Preventive (Truth) Alert
- Corrective (Truth) Alert

With Corrective

- Preventive (Truth) Alert
- Corrective (Truth) Alert
• After each encounter, tower controller answered the following questions:

 1. In this encounter did the UAS pilot maintain adequate separation?
 - Yes: 255
 - No: 1

 2. Did the UAS pilot maneuver unnecessarily for the encounter?
 - Yes: 242
 - No: 14

 3. Were there issues with the UAS pilot communications?
 - Yes: 252
 - No: 4

• Tower rated UAS behaviors as overwhelmingly appropriate
 – UA pilots were able to detect appropriate traffic
 – Disruptive turn-outs on instrument approach where pilots should have executed missed approach
 – 1.5 nm separation on approach worked for simulation

• Pilot responses to traffic on final was left to their discretion – although training emphasized the expectation to go missed/go-around
 – During debrief pilots explained that they (often) reflexively looked to make a heading change as a way to immediately increase separation
 – Altitude bands typically indicated that a climb would not resolve the conflict
• Tau DWC candidate had far more instances of a DAA alert that did not lead to a UAS maneuver
 – No Tau = 7 alerts w/o maneuver
 – Tau = 40 alerts w/o maneuver

• 62% (29/47) of these cases were against a Corrective alert

• None of these alerts resulted in a loss of DWC
 – Avg. alert duration = 6sec
• 40 total maneuvers were made against traffic that did not register a DAA alert
 – Evenly distributed between the 2 DWC candidates
• Maneuvers were typically speed decreases to provide enough space for aircraft in front
 – No Tau had minority of climbs and heading changes against non-alerted traffic
• Tau candidate was far more likely to alert to unscripted traffic, particularly jet traffic and traffic turning to base
 – Jet traffic approached KSTS from the NE before getting established on a 5nm straight-in; during the Instrument approach scenario, it briefly pointed at UA
• Discrepancy between conditions is smaller when comparing # of maneuvers
 – No Tau candidate actually led to more maneuvers than alerts; Tau candidate had ~1/2 as many maneuvers than alerts

• Count of Corrective/Warning alerts and maneuvers against unscripted traffic types by DWC candidate:

<table>
<thead>
<tr>
<th>Unscripted Traffic Location</th>
<th>No Tau at First Corr/Warn</th>
<th>Tau at First Corr/Warn</th>
<th>No Tau at Maneuver</th>
<th>Tau at Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn to Base</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Jet Traffic</td>
<td>0</td>
<td>24</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Right Downwind</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Left Downwind</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Base</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Final</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>70</td>
<td>26</td>
<td>38</td>
</tr>
</tbody>
</table>
Maneuvers Made by Scenario Type

- Speed changes were the most common type of maneuver made (94 total)
- Missed Approaches & Heading Changes were equally common (43 vs. 42)
 - Missed approach more prevalent in Instrument
 - Heading changes more common in Visual
- Pilots occasionally saved their missed approach for a later upload

of Maneuvers

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Instrument</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heading Change</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Missed Approach</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Speed Decrease</td>
<td>54</td>
<td>38</td>
</tr>
<tr>
<td>Temporary Climb</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Maneuver Type x Maneuver Order

<table>
<thead>
<tr>
<th>Maneuver Type</th>
<th>1st Maneuver</th>
<th>2nd Maneuver</th>
<th>3rd Maneuver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heading Change</td>
<td>15</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Missed Approach</td>
<td>18</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Speed Decrease</td>
<td>54</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Temporary Climb</td>
<td>9</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
Worst case was with the Tau DWC candidate, With Corrective alert config.

- Instrument scenario
- ‘Late Acceleration’ – lost DWC at the same time it became a warning
- Pilot exacerbated it by turning with the traffic and delaying a climb
• No Tau candidate had fewer alerts
 – None occurred far away from the 2 downwind legs
• Tau candidate had more alerts overall with several occurring far away from runway
 – Tau candidate was more consistent in where the intruder was at first alert
• How did pilots continue the approach when they maneuvered for traffic but did not go missed?
 – **Re-Engage**: turn back to final and/or continue descent
 – **Runway Heading**: turn back toward runway without engaging descent
 – **Re-Fly**: made a 360 or enter the right/left downwind to re-do the approach entirely
• In Instrument scenario, pilots most often tried to re-engage the approach
• In Visual scenario, pilots most often re-flew the approach
LoDWC_LaRC typically started with ownship established on final with intruder still near right/left downwind (likely at the start of the turn base)
• CPA typically occurred once the intruder neared or crossed our final approach path