Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial off-the-shelf</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Operational Environmental Satellite</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>MBMA</td>
<td>Model-Based Mission Assurance</td>
</tr>
<tr>
<td>MMS</td>
<td>Magnetospheric MultiScale</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NEPP</td>
<td>NASA Electronic Parts and Packaging (Program)</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NSREC</td>
<td>Nuclear and Space Radiation Effects Conference</td>
</tr>
<tr>
<td>SOHO</td>
<td>Solar and Heliospheric Observatory</td>
</tr>
<tr>
<td>SSR</td>
<td>Solid-State Recorder</td>
</tr>
</tbody>
</table>

To be published on nepp.nasa.gov.
Purpose

• Describe the accelerating use of COTS parts in space applications
• Understand component reliability and threats in the context of the mission, environment, application, and lifetime
• Provide overview of traditional approaches applied to COTS parts in flight applications
• Discuss challenges and potential paths forward for COTS systems in flight applications – it’s all about data!
Outline

- COTS parts from a space user’s perspective
- Accelerating use of COTS parts
- Traditional use of COTS parts in space applications
- Evolving approaches for COTS parts and systems in space applications
- Conclusions
Near-Earth Space Environment

Can induce a variety of cumulative degradation effects as well as soft and hard errors

Image credit: NASA

Thermal

Vacuum

Launch

Lifetimes

Solar Protons & Heavy Ions

Galactic Cosmic Rays

Trapped Protons & Electrons

Radiation

Servicing limitations

Trajectory / Orbit

Et cetera

To be published on nepp.nasa.gov.
What Are COTS Parts?

Space Users’ Perspectives

• Parts designed for applications where the specifications, materials, etc. are established solely by the manufacturer / vendor pursuant to market forces
• Parts not explicitly designed for space applications
 – May have additional requirements imposed by users or external organizations
 • Assess product quality (screening) and reliability (qualification)
Spacecraft and Payloads Are Still Largely Custom-Built

- Assembly techniques have advanced considerably, however…
- Touch labor and significant testing for validation
- Traditionally, little to no economy of scale

Image Credit: NASA

To be published on nepp.nasa.gov.
COTS Parts in Space

Artist’s rendering of GOES-R Spacecraft

Launched: 19-Nov-2016
Operational as GOES-16

NASA GSFC Dellingr CubeSat
Released to Orbit: 20-Nov-2017

COTS parts → Mostly COTS systems

To be published on nepp.nasa.gov.
Accelerating Use of COTS Parts in Space Applications

Secondary payloads (e.g., CubeSats) launched each year, including commercial constellations

To be published on nepp.nasa.gov.
Traditional Use of COTS Parts

NASA Users’ Perspectives

- Provided detailed and relevant knowledge about the performance and reliability of the actual parts to be flown
- Nearly-closed ecosystem leveraged to maximize reliability

Military Specifications & Standards (U.S. listed; parallels in Europe & Japan)
- MIL-PRF-19500
- MIL-PRF-38535
- MIL-STD-750
- MIL-STD-883

Community Consensus Standards
- ASTM
- JEDEC

Performance (Examples)
Testing (Examples)
Testing (Examples)

To be published on nepp.nasa.gov.
Traditional Use of COTS Parts

NASA Users’ Perspectives

• Up until early 1990s, only used COTS parts when there was no Military / Aerospace option to fulfill requirements – or in non-critical applications

• Key performance requirements (e.g., size, weight, power, etc.) drove COTS parts into the mainstream

Magnetospheric Multiscale (MMS) observatories processed for launch

Early use of NAND flash in solid state recorder; launched 12-Mar-2015

Image Credit: NASA

To be published on nepp.nasa.gov.
Traditional Use of COTS Parts

NASA Users’ Perspectives

- Upscreening is the classic approach used for deploying COTS electronics in flight systems
 - Perform a series of tests over extended parameters, coupled with application information, to determine if a part can meet a mission’s reliability & availability requirements
 - Includes temperature, vacuum, radiation, shock, vibration, etc.

Expert-Friendly

Effective mapping of part-level requirements to mission expectations is essential

To be published on nepp.nasa.gov.
Evolving Use of COTS Parts

In many newer systems using COTS parts...

• Schedule is critical
• Budget is limited
• Size, weight, and power are limited
• Performance or availability were likely sole reasons for COTS parts selection
• If not possible to qualify by analysis, that leaves testing, but…
• Higher risk tolerance ≠ lower qualification budget

Image Credit: NASA

CubeSat launch from ISS

To be published on nepp.nasa.gov.
Evolving Use of COTS Parts

Intentional Operational Feedback

Figure adapted from R. Harboe-Sorensen et al., RADECS, 2001.

To be published on nepp.nasa.gov.
Evolving Use of COTS Parts

Model-Based Mission Assurance (MBMA)

Figure after A. F. Witulski et al., NEPP Electronics Technology Workshop, 2017.
R. A. Austin et al., IEEE Reliability and Maintainability Symposium, 2017.

To be published on nepp.nasa.gov.
Evolving Use of COTS Parts

Cross-Organization Data Sharing

- Advocate for a community-consensus electronic part data exchange standard
- Bootstrap from other implementations (e.g., Health Level-7) – can still protect intellectual property
- Aggregate data to avoid being data-starved – statistical significance

Multiple organizations

Heterogeneous data

To be published on nepp.nasa.gov.
Conclusions

• Innovation requires an increasing number of COTS-based space applications
• Understanding component reliability and availability requirements in the context of mission expectations remains a key challenge
• Operational telemetry enables us to stumble / fail smart and improve our models
• Sharing and aggregating component data enables more design creativity