ADVANCING TECHNOLOGIES FOR CLIMATE OBSERVATION

NASA Goddard Space Flight Center

D. Wu, J. Esper, N. Ehsan, T. Johnson, W. Mast, J. Piepmeier, and P. Racette

07/31/2014
Outline

Objectives

Mission requirements

Mechanical configuration

Instrument

Results

Launch plan
Objectives

Climate research needs
- Accurate global cloud ice measurements
 - Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation
- Cost-effective, sensitive instruments for diurnal and wide-swath coverage
- Mature technology for space remote sensing

IceCube objectives
- Develop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions
- Raise TRL (5→7) of 883 GHz receiver technology
- Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems
- Enable remote sensing of global cloud ice with advanced technologies and techniques

First-ever 874 GHz cloud measurements acquired by CoSSIR in 2008. CoSSIR measurements of ice clouds were used to successfully demonstrate retrieval of ice water path (IWP) and ice particle median mass-weighted ice particle size (D_{me}).
Mission Requirements

883 GHz measurement requirements:
- Accuracy < 2 K
- Precision (NETD) < 0.2 K
- Spatial resolution < 15 km

Mission requirements:
- In-flight operation 28 days
- Periodic views of Earth (science) and space (calibration) within an orbit
- Science data 30+ % (8+ h /day)
- Pointing knowledge < 25 km

Validation plan:
- Lab measurement and verification
- Modeled vs. observed clear-sky radiances for accuracy verification
- Space-view radiances for precision
Flight Configuration

Volume: 100 mm x 100 mm x 340 mm (3U)
Mass: 4 kg
Power: 14 Wh

Top plate w/ thermal packs
Solar arrays (deployable) cells face sun vector
Solar array mount panel

Radiator
+Y shear panel
GPS antenna
Umbilicals
UHF antenna
BCT XACT
S/C bottom plate
Main panels (w/rails)

Instrument sub-assemblies
BCT-XACT
Spacecraft bus electronics

Volume: 100 mm x 100 mm x 340 mm (3U)
Mass: 4 kg
Power: 14 Wh
Instrument: Block Diagram

Receiver Interface Card (RIC)
- 14-bit ADC ST 1401
- Buffer
- Signal Conditioning Circuit

Power Distribution Unit (PDU)

Switching Sequence
- 10 ms
- 1 sec
- 40

<table>
<thead>
<tr>
<th></th>
<th>A+N</th>
<th>A</th>
<th>Ref</th>
<th>R+N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching Sequence 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate Frequency Assembly (IFA)
- Coupler 20 dB
- LNA G= 25 dB
- BPF F= 6-12 GHz
- Gain Equalizer
- Detector

Noise Source

Gain Equalizer

Video Amp

Gain

Equalizer

Intermediate Frequency Assembly (IFA)
Antenna

Reflector spill-over, which will be blocked by the aperture window.

Feed horn: Potter horn design

Horn housing, half cut away

Antenna patterns

Port input reflection

Courtesy of Cornelis F. du Toit
Instrument: MLA and IFA

- **MLA (Mixer LO Assembly):**
 - Measured noise temperature: 4000 K
 - Measured conversion loss: 13 dB
 - Mass and volume: 150 g, 90 x 90 x 35 mm³
 - Power: 1.73 W

- **IFA (Intermediate Frequency Assembly):**
 - Estimated noise figure: 3-4 dB
 - Gain and bandwidth: 38.1 dB and 4 GHz
 - Mass: 200 g
 - Volume: 90 x 90 x 20 mm³
 - Power: 1.15 W
Instrument: RIC and iPDU

RIC (Receiver Interface Card)

- Analog signal
- Digital signal
- Power

iPDU (instrument Power Distribution Unit)

- Power Distribution Unit (PDU)
- RIC (5V/60mA)
- Video Amp (5V/15mA)
- 5.2v/25mA
- 5V/0.95A
- 5x0.95A
- Video Output (50mA)
- 12v/0.335A
- 5v/0.6mA
- Noise Diode
- -15V/1 to 10mA
- MLA Multipliers
- SMD
- Isolated outputs

Power: 0.3 W, Mass: 100.7 g

Power: 2.23 W, Mass: ~100 g
Power per Instrument Mode

Based on integrated Engineering Model (EM) instrument measurements:

<table>
<thead>
<tr>
<th>Load</th>
<th>- ND</th>
<th>all</th>
<th>- PA, -ND</th>
<th>-PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nom</td>
<td>+10%</td>
<td>Nom +10%</td>
<td>Nom +10%</td>
</tr>
<tr>
<td></td>
<td>Watts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw PDU logic</td>
<td>6.56</td>
<td>7.22</td>
<td>6.44</td>
<td>3.94</td>
</tr>
<tr>
<td>non-sw Video Amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw MLA_DRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>switched MLA Power Amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw LNA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw LNA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>switched Noise Diode_Current Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw MLA Multiplier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw Video amp NEG (linear reg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-sw RIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RIC ON/PDU OFF: OFF

Non-sw Video Amplifier OFF

Non-sw MLA Multiplier OFF

Non-sw MLA Multiplier OFF

Non-sw RIC OFF

Non-sw deleted OFF

Non-sw MLA Multiplier OFF

Switched Noise Diode_Current Source OFF

Non-sw LNA2 OFF

Non-sw LNA1 OFF

Non-sw MLA_DRO OFF

Non-sw Video Amplifier OFF

Non-sw PDU logic OFF

Courtesy of Amri Hernandez-Pellerano
Instrument Integration & Test

- Verification has been done via alternating between room temperature and LN$_2$ target

- Ambient setup includes:
 - Chopper wheel with room temperature absorber
 - 12” x 12” mirror
 - GSE spacecraft simulator
 - LN$_2$ absorber (Eccosorb AN 72)

- The instrument will be tested over temperature with a Thermal Vacuum Chamber (TVAC)
Ambient Test Results

- Receiver noise temperature has been measured via Y-factor measurement both with lock-in amplifier and RIC in the antenna mode.

- The instrument noise temperature varies between 7500 K to 10500 K in 45 mins due to thermal effects.

- The flight instrument has thermal control to stabilize the temperature of the instrument.

- The instrument is switching states every 10 ms for calibration.
Instrument TVAC

Sub-MMW blackbody cold target (100 K) & hot target (300 K) for external calibration; tolerance ± 1 K

45deg-offset rotating mirror to alternate observed scene/target

Instrument/IceCube

Sub-MMW blackbody target (variable 100-300 K); tolerance ±1 K

IceCube Calibration Fixture (mounting hardware not shown) (22.6” x 22.6” x 36”)

Courtesy of Kevin Horgan, 555 (inspired by MIT Lincoln Laboratory MicroMAS TVAC structure)
NASA CubeSat Launch Initiative (CSLI)
- Coordination of upcoming launches
- 1U, 2U, 3U, or 6U

International Space Station (ISS)
- Secondary cargo payload on ISS resupply missions
- Mid 2016
- 350-450 km, 51.6° inclination near-circular orbit
- β angle variation: 0-75°

3U CubeSat Launchers
- NanoRacks CubeSat Deployer from ISS
NASA ESTO, SMD and CSLI supports

- **PI**
 - Wu, Dong (GSFC, 613)
 - Piepmeier, Jeffrey (GSFC, 555)
 - Esper, Jaime (GSFC, 592)

- **Deputy PI**
 - Dever, Steve (GSFC, 613)

- **Tech Lead**
 - Esper, Jaime (GSFC, 592)

IceCube Team

- **Inst. And Sys. Lead**
 - Ehsan, Negar (555)

- **Inst. Scientist**
 - Racette, Paul (555)

- **Antenna**
 - Du Toit, Neils (555)

- **Integration & Test**
 - Horgan, Kevin (555)

- **Calibration Alg.**
 - Hudson, Derek (555)

- **IF subassembly**
 - Lucey, Jared (555)

- **Assembly Tech.**
 - Macmury, Shawn (562)

- **Pathways Intern**
 - Cooke, Caitlyn (555)

- **Power Lead**
 - Hernandez, Amri (563)

- **Power**
 - Ortiz-Acosta, Melyane (563)

- **Mechanical**
 - Solly, Michael (562)

- **Parts Support**
 - Fetter, Lula (560)

- **RIC Lead**
 - Wong, Mark (564)

- **Video Amp/RIC**
 - Lu, Daniel (555)

- **GSE Software**
 - Topper, Alyson (561)

CubeSat, Ground System, Op (WFF, GSFC)

- **Mission Sys Engr.**
 - Mast, William (WFF, 598)

- **Mgt. Support**
 - Johnson, Tom (WFF, 8000)

- **Power Systems**
 - Purdy, Christopher (WFF, 569)

- **Power Systems**
 - Corbin, Brian (WFF, 569)

- **Software/Avionics**
 - Daisey, Ted (WFF, 589)

- **Software/Avionics**
 - Lewis, Christopher (WFF, 569)

- **Mechanical/Thermal**
 - Hudeck, John (WFF, 548)

- **GN&C**
 - Heatwole, Scott (WFF, 598)

- **SIC**
 - Duran-Aviles, Carlos (GSFC, 564)

- **SIC**
 - Rush, Kurt (GSFC, 564)

- **Thermal Analysis**
 - Choi, Michael (GSFC, 545)

874 GHz Receiver (Virginia Diode, Inc)

- **Tech POC**
 - Hesler, Jeff

- **LO Drive Module Design**
 - Bryerton, Eric

- **Integration and Testing**
 - Retzloff, Steven

- **CAD and Mechanical**
 - Neff, Chuck
Back-Up
Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation.

Large discrepancies in ice water path (IWP) exist in global circulation models.

Limited availability of data and poor assumptions about the cloud micro- and macro-physical properties of clouds are principle contributors to the discrepancy.

No ice cloud measurements currently exist for the intermediate altitudes.

mm- and submm-wave radiometry offers great potential to fill the measurement gap in the middle and upper troposphere.
Importance of polarization in cloud ice measurements

- Determining ice crystal orientation is important for accurate cloud ice retrieval.
- Depending on V or H to use, cloud ice scattering signals can differ by 20-50% for cirrus anvil.
- Global properties of ice crystal orientation and their variations with cloud type remain unclear.
• MLA and IFA are isolated from chassis (there is a high resistive connection to chassis to prevent charge build up). The return path of the loads will be only through iPDU.

• RIC is grounded through iPDU to chassis.
Two samples based on porous PTFE have been measured by Kevin Miller using FTS: Zitex G110 and Zitex G115 (recommended by Ed Wollack).

- Fitted material constants $\varepsilon_r=1.4+0.0001$ (Courtesy of Ed Wollack)
- Both G110 and G115 would perform optimally if the thickness could be increased by 1.4mils.
- G115 was selected based on its superior mechanical strength.
Back-UP: Mixer Noise vs Plate Temperature

- LO=883 GHz, 8-11 GHz IF
- Relative measurement, T_{min} higher due to loss of taper and WR-10 waveguide
- Optimized for 28 +/- 10 C
- LO power inversely proportional to temperature, so above ~40C, mixer underpumped
- Better to be too cold than too hot!
- This curve can be shifted to right or left with change of resistor in 73AMC bias circuit
Mixer Loss vs Plate Temperature

![Graph showing the relationship between MLA Temp (C) and Normalized DSB Conversion Loss (dB). The graph indicates a significant increase in loss as temperature increases.](image-url)