Global Soil Moisture Estimation from L-Band Satellite Data: Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

Gabriëlle De Lannoy, Rolf Reichle, Alexander Gruber, Michel Bechtold, Jan Quets, Jasper Vrugt, Jean-Pierre Wigneron

KU Leuven, Department of Earth and Environmental Sciences, Division Soil and Water Management
Global Modeling and Assimilation Office (Code 610.1), NASA/GSFC, Greenbelt, MD, USA
University of California, Irvine, Department of Civil and Environmental Engineering, Irvine, CA, USA
ISPA, INRA Bordeaux, France

5 April 2018
L-band (1.4 GHz) brightness temperatures (T_b) are sensitive to soil moisture and temperature in the surface layer (5 cm).
Tb increases with drier soil moisture (sfmc)

Tb increases with more vegetation (τ)

Tb strongly depends on parameters (e.g. h, roughness)
Parameter Estimation

Lookup tables: per vegetation class

- **SMAP L2**
- **SMOS IC**

Calibrated: per grid cell

- **SMAP L4**

- Based on field experiments; optimizing retrievals vs in situ soil moisture
- Can this also be used for forward modeling (DA experiments)?

- Based on optimizing SMOS Tb versus simulated Tb, using simulated soil moisture (De Lannoy et al., 2013, 2014)

- Can this also be used for inverse modeling (retrievals)?
Complexities

Enhance the RTM for specific land cover types, e.g. peatlands:

- **Soil moisture dynamics:**
 improved physical processes in peatland
- **RTM w/ dielectric model:**
- **Open water:**
 incl. open water reduces bias in Tb forward modeling

\[
Tb = f_{\text{land}}.Tb_{\text{land}} + f_{\text{SOW}}.Tb_{\text{SOW}} + f_{\text{DOW}}.Tb_{\text{DOW}}
\]

land + static (land mask) + dynamic open water (AMSR2)
Dielectric model only has minor impact (Bircher vs Wang & Schmugge)
PEAT-CLSM outperforms CLSM for both soil moisture and Tb simulations
Adding dynamic open water fraction further improves the results

(Michel Bechtold)
SMOS Retrievals
Global Soil Moisture (SM) and VOD Retrievals

- **SMOS (quasi-)operational retrieval products:**
 - **SMOS L2/L3**
 - only retrieval for nominal fraction, low vegetation/forest
 - \((\text{SM}, \text{VOD}) = f(Tb_{SMOS}, \text{MODIS LAI}, \text{ECMWF Ts}, \text{Tb}_{ECMWF \text{ notnominal}}, \text{RTM})\)
 - **SMOS-IC** (Fernandez-Moran et al., 2017)
 - homogenous pixels
 - \((\text{SM}, \text{VOD}) = f(Tb_{SMOS}, \text{ECMWF Ts}, \text{RTM})\)
 - **SMOS-LPRM** in ESA CCI
 - homogenous pixels
 - \(\text{VOD} = f(\text{MPDI}_{SMOS}^{\omega}), \text{and} \text{SM} = f(Tb_{SMOS}, \text{VOD}, \text{model Ts}, \text{RTM})\)

- **SMOS research products:** physically-based, neural network, various RTMs, ...
 - homogenous pixels
 - \(\text{VOD} = f(Tb_{SMOS}, \text{MERRA2 Ts, MERRA2 SM, RTM}), \text{or} \text{SM} = f(Tb_{SMOS}, \text{MERRA2 Ts, MERRA2 LAI, RTM})\)
In situ validation (CalVal sites)

- All operational products do better than model simulations.
- Much simpler SMOS-IC product performs as good as complex SMOS L2.
- RTM calibrated for forward modeling could serve for SM retrievals.
- Lit3 (fwd modeling) is inferior for retrievals.

(Jan Quets)
Representative site evaluation (11 vegetation classes)

- limited (anomaly) correlations: L-band VOD contains other information than optical vegetation indices (VI)
- SMOS-IC performs better than operational SMOS L2 (anomaly R)
- RTM calibrated for forward modeling could serve for \(\tau \) retrievals
- Lit3 (fwd modeling) is inferior for retrievals
SMOS Data Assimilation
Data Assimilation

SMOS Obs (footprint) vs NASA GEOS-5 Land Surface Modeling (36 km)

- Catchment land surface model
- MERRA surface meteorology

Observation operator:
- spatial aggregation
- radiative transfer model*
 only in case of Tb assimilation

*[K]

Conditioned on

Surface (0-5 cm)

"Root zone" (0-100 cm)
Data Assimilation

SMOS Obs (footprint) NASA GEOS-5 Land Surface Modeling (36 km)

- Catchment land surface model
- MERRA surface meteorology

Observation operator:
- spatial aggregation
- radiative transfer model* only in case of Tb assimilation

Data Assimilation
- 3D EnKF
- bias mitigation*
- filter parameters*

- Surface soil moisture (≈ top 5 cm)
- Root zone soil moisture (≈ top 1 m)
- Other consistent geophysical fields, with error estimates

⇒ * calibration using long-term SMOS record
Land Surface Modeling

Prognostic LSM

- conservation mass and energy
- convection, diffusion
- Richards equation

Input: Surface (0-5 cm)

Output: “Root zone” (0-100 cm)

Diagnostic RTM

- radiative transfer
- NN, regression
SM Data Assimilation

- Observation-minus-forecast (O-F, innovation), footprint-scale
- Increment, model grid
- Analysis, model grid
- 3D EnKF: smooth transitions, no swath edges in analysis
Tb Data Assimilation

Innovations
(a) O-F Tb$_H$ [K]
(b) O-F Tb$_V$ [K]
(c) Δwtot [mm]
(d) Δtp1 [K]

Increments

Analysis
(e) sfmc [m3.m$^{-3}$]
(f) rzmc [m3.m$^{-3}$]
(g) tp1 [K]

(30 April 2015, 12 UTC)
SM Observation or Innovation Bias

SM is relatively stationary

Example: at one location,
- at any time, replace an observed SM of 0.08 m3/m3 with a value of 0.10 m3/m3

- CDF based on 5 years, all seasons
- separate rescaling for ascending (6 am) and descending (6 pm) times
Tb has a strong seasonal pattern

Example: at one location,
- at pentad 7, correct the observed T_b^H for a bias of 237-241 K
- at pentad 36, correct the observed T_b^H for a bias of 262-260 K
- at pentad ..., correct ...

model-SMOS $\langle T_b^H(40^o) \rangle \ [K]$, Asc, pentad 36

Little River

- mean-only, 5 year-average, per pentad
- separate rescaling for ascending (6 am) and descending (6 pm), 7 angles, 2 polarizations
Normalized Tb or SM Innovations

\[
\text{std}(O-F/\sqrt{\sigma_{F}^2 + \sigma_{O}^2}),
\]

with \(\sigma_{F}^2 \) and \(\sigma_{O}^2 \) determined by DA design parameters (ensemble perturbations).

Target value = 1

\(< \text{ DA system } >\)

overestimates underestimates

actual uncertainty
Δwtot Increments

Tb_7ang DA
1. **(a) m=0.46, s=0.11 [-]**
2. **(b) m=0.76, s=0.19 [-]**

SM DA
1. **(c) m=6.86, s=3.65 [mm]**
2. **(d) m=4.17, s=1.93 [mm]**

Tb DA

SM DA

- **N per day**
- **std(Δwtot)**
Δwtot Increments

Tb_7ang DA

(a) $m=0.46$, $s=0.11$ [-]

(b) $m=0.76$, $s=0.19$ [-]

SM DA

(c) $m=6.86$, $s=3.65$ [mm]

(d) $m=4.17$, $s=1.93$ [mm]

Less Tb data than SM data assimilated

More increments than observations: spatial filter

N per day

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

std(Δwtot)

0 5 10 15

0 5 10 15
\(\Delta w_{tot} \) Increments

Tb_7ang DA

(a) \(m=0.46, s=0.11 \) [-]

(b) \(m=0.76, s=0.19 \) [-]

Less Tb data than SM data assimilated

More increments than observations: spatial filter

(c) \(m=6.86, s=3.65 \) [mm]

(d) \(m=4.17, s=1.93 \) [mm]

\(\text{std}(\Delta w_{tot}) \) for Tb DA larger than SM DA due to relatively higher Tb O-F, more info in Tb O-F
$\triangle wtot$ Increments (mm)

- unbiased system
- Tb DA introduces more large increments than SM DA
- \sim Tb DA has larger innovations than SM DA
- different information extracted during Tb DA and SM retrieval process?

(De Lannoy and Reichle, 2016, HESS)
In Situ Evaluation

Tb_7ang DA

(a) $\Delta \text{RMSD}_{ub} = -0.004 \, [m^3/m^3]$
(153/187 improved)

(b) $\Delta \text{RMSD}_{ub} = -0.003 \, [m^3/m^3]$
(143/187 improved)

(c) $\Delta \text{RMSD}_{ub} = -0.002 \, [m^3/m^3]$
(125/187 improved)

(d) $\Delta \text{RMSD}_{ub} = -0.001 \, [m^3/m^3]$
(121/187 improved)

SM retrieval DA

Surface s.m.

Root-zone s.m.

Blue=better
Red=worse
In Situ Evaluation

a) Surface Soil Moisture

![Bar chart showing anomR for favorable and non-favorable areas with N=98(24) and N=83(22).]

- largest soil moisture improvements in favorable areas
- similar averaged skill statistics for Tb and SM DA

b) Root-Zone Soil Moisture

![Bar chart showing anomR for favorable and non-favorable areas with N=98(24) and N=83(22).]

- open loop, Tb_7ang DA, Tb_fit DA, SM DA

(De Lannoy and Reichle, 2016)
Effect of RTM on Tb DA

Repeat the Tb_7ang DA experiment, but with lookup table RTM parameters:

- **Calibrated**
- **Lookup (SMAP L2)**

Effect on Tb obs predictions:

- primary: different seasonal bias → Tb rescaling
- secondary: different anomalies?

(Alexander Gruber)
Effect of RTM on Tb DA

Repeat the Tb_7ang DA experiment, but with lookup table RTM parameters:

- **Calibrated**

- **Lookup (SMAP L2)**

Effect on Tb obs predictions:
- primary: different seasonal bias
 → Tb rescaling
- secondary: different anomalies?

(Alexander Gruber)
- obvious seasonal bias RTM calib vs lookup
- after rescaling: similar Tb anomalies for RTM calib and lookup
- different variance in Tb obs and Tb fct anomalies (for both RTM calib and lookup)
- Tb anomaly innov variance is slightly larger for RTM calib (not over forests)

(Alexander Gruber)
- unbiased system
- both Tb DA schemes correct soil moisture trajectories similarly
- calibrated RTM introduces more large increments than lookup RTM
 \sim Tb (anomaly) innovation variance
In situ surface and root-zone soil moisture (ISMN, not strictly QC-ed)

- **Tb DA using RTM calib and lookup**

- **Conclusions**
 - DA always performs better than OL (even when forced with qualitative MERRA2)
 - similar averaged skill statistics for Tb DA using RTM calib and lookup

(Alexander Gruber)
Conclusions

SMOS (or SMAP) Tb to soil moisture via radiative transfer modeling
- very different RTM parameterizations available for forward and inverse modeling
 - optimized parameters for retrievals work for data assimilation (fwd RTM)
 - optimized parameters for fwd modeling work for retrievals (inverse RTM)
- Tb estimates much improved when accounting for open water in RTM

Data assimilation:
- SM DA and Tb DA both improve surface and root-zone soil moisture
- SM DA and Tb DA add different increments to products
- seasonal bias mitigation in Tb DA effectively overcomes shortcomings in RTM parameterization (calibrated or not)
- to do: spatio-temporal optimization of Tb (obs and forecast) errors

 gabrielle.delannoy@kuleuven.be