Improved hydrology over peatlands in a global land modeling system

M. Bechtold¹, G. De Lannoy¹, R. Reichle², R. Koster², S. Mahanama², D. Roose¹

¹ KU Leuven, Belgium, ² NASA-GMAO, USA
Background: Peatlands Under Pressure

3% of land surface

33% of global soil organic carbon

Increasingly under pressure: drainage / fire / climate change

Global Peatland (Histosol) Distribution; Xu et al., 2018
Long list of ‘peatland ecohydrological models’

- Focus: Carbon Cycle (with or without hydrological simulation)
- Water Level simulation challenging

Peat accumulation model (Hilbert et al., 2000)
PCARS (Frolking et al., 2002)
McGill Wetland (St-Hilaire et al., 2010)
Biome-BGC (Bond-Lamberty et al., 2007)
Wetland-DNDC (Zhang et al., 2002)
Ecosys (Dimitrov et al., 2011)
InTEC (Ju et al., 2006)
BEPS [Chen et al., 2007, 2005]
DigiBog (Baird et al. 2012, Morris et al. 2012)
PEATBOG (Wu et al., 2013)
... and several more

Integration into continental/global land surface schemes
CLM (Shi et al., 2015)
CLASS–CTEM (Wu et al. 2016)
ORCHIDEE–PEAT (Qui et al., 2017)

+ PEAT-CLSM
CLSM: Catchment Land Surface Model of NASA’s Goddard Earth Observing System Model (GEOS-5)
Motivation: Why CLSM of GEOS-5?

1) Coupled Ocean-Atmosphere-Land Model: Changed energy balance over peatlands affects atmospheric simulations

2) Land Data Assimilation System (e.g. SMAP L4 Soil Moisture Product)

Peatlands: Potential to monitor wetness variation with passive and active microwave observations (Kim et al. 2017, Bechtold et al. 2018)
CLSM: Main Characteristics

• High emphasis on efficiency (global appl.) (Koster et al. 2000)
• Partitioning of land surface into hydrologic catchments
• Topographic Wetness Index based model
 → subgrid soil moisture + water level variability and runoff
• Each grid cell modeled with dominant catchment and soil
• No numerical coupling between grid cell

• Peat as soil class (De Lannoy et al. 2014, JAMES)
 → Water levels however mostly still far too deep (~ 2 meter)
 and dynamics not typical for peatlands
Objective

• Implement typical peatland hydrological characteristics into CLSM
• Maintain simplicity and efficiency of CLSM

Scope narrowed to
• Northern Peatlands
• Degree of groundwater influence highly variable and unknown at global scale → All peatlands treated as rain-fed peatlands

Next:
→ Model Modifications
→ Validation
→ Summary and Outlook
Model Modification #1

At large scales peatlands are nearly flat → replaced by …

Topographic Wetness Index Distribution from Catchment Topography

Elevation Distribution from typical Peatland Micro-topography

Weston et al. 2015
Example of “hummock and hollow microtopography”
Model Modification #1: dynamic surface water storage

Mineral land surface (here: no microrelief)

\[Sy = \frac{\Delta WS}{\Delta WL} \]

Specific Yield (-) 1

Water level (m)

0

-10

Sand Layer

Clay Layer

Groundwater

Hydrogeology: Specific Yield as layer constant

Peatland surface (microrelief)

Based on Dettmann and Bechtold (2015 Hydr. Proc.)

\[Sy = f_{sur} Sy_{sur} + f_{soil} Sy_{soil} \]

Example of specific yield profile (Dettmann and Bechtold 2016, VZJ)
Model Modification #2: Runoff

Continuous transition from baseflow to overland flow

Conductivity:
\[K_s(z) = \frac{K_{s,z=0}}{(1 - z)^m} \]

Transmissivity:
\[T_a(WTD) = \int_{z_{ac}}^{WTD} K_s(z)dz \]

Runoff:
\[r(WTD) = v T_a \]

Romanov, 1968, Ivanov 1975

Morris et al. 2015
Model Modification #3: Evapotranspiration

- Evapotranspiration: Water stress coupled to water table depth
- Vegetation classes and evapotranspiration calculation as in CLSM
Validation (water table depth data)

Bogs

Unbiased root mean square deviation

Temporal statistics

Fens

Anomaly correlation

70 monitoring wells
18 peatlands
Validation (water table depth data)

Example 1: Bog in NW Germany
Mild winter, high precipitation, $R=0.9$

Example 2: Bog in Belarus
Long freezing period, $R=0.6$

- Water levels level off smoothly close to surface
- Capability to predict summer anomalies
- Capability to predict snow melt peaks

Here: bias + std corrected
Validation: Inundation Extent

GIEMS: Global Inundation Extent from Multi-Satellites

1993-2007: monthly, 28km resolution
No calibration/validation over peatlands

Prigent et al., 2007
Summary

• Peatlands have a specific hydrological dynamics
• Simple solutions for global land surface models with significant effects

Outlook

• Validation: Evapotranspiration (Eddy Towers)
• Validation: Inundation (masking non-peatland areas, GIEMS 2.0)
• Data Assimilation using SMOS/SMAP Brightness Temperatures
Acknowledgments

Validation

- Simulation experiments using different versions of the GEOS-5 Catchment Land Surface Model
- Domain: Northern Hemisphere
- Forcing data: MERRA-2 (corrected precip.)
- No parameter calibration for new model (PCM)
- Comparison with ~ 60 observed multi-year time series (13 clusters) of water table depth (WTD)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>M2</th>
<th>P</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Operational Merra-2, only mineral soils</td>
<td>Revised soil input including Peat class (De Lannoy et al. 2015)</td>
<td>Peat class + Refined Topography and Catchment delineation</td>
</tr>
<tr>
<td>Resolution</td>
<td>2/3º x 1/2º</td>
<td>EASEv2 M09</td>
<td>5' x 5'</td>
</tr>
</tbody>
</table>

\[\Delta R (PCM - PC) \]

\[-0.45 \text{ to } -0.30 \]
\[-0.30 \text{ to } -0.20 \]
\[-0.20 \text{ to } -0.10 \]
\[-0.10 \text{ to } 0.00 \]
\[0.00 \]
\[0.00 \text{ to } 0.10 \]
\[0.10 \text{ to } 0.20 \]
\[0.20 \text{ to } 0.30 \]
\[0.30 \text{ to } 0.45 \]
Radiative transfer parameters

- Brightness Temperature (passive microwave)

Dielectric constant of soil-water-air mixture
\[= f (\text{sand, clay, poros, wp, soil moisture}) \]

Soil reflectivity

Radiative transfer model