Carbon Dioxide Methanation for Human Exploration of Mars: A Look at Catalyst Longevity and Activity Using Supported Ruthenium

Elspeth M. Petersen1, Anne J. Meier2, and Jean-Philippe Tessonnier1*

2NASA, Kennedy Space Center, Florida, 32899 (USA)
1Dept. of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (USA), *tesso@iastate.edu

INTRODUCTION
Objective
The remote operation of the Mars ISRU lander to produce rocket fuel prior to crew arrival on the planet to power an ascent vehicle.

Constraints
- Long-term operation (480 days)
- Variable conditions
 - Feed gas flow rates
 - Feed gas flow ratios
 - Reactor bed temperature

CURRENT STUDY PURPOSE
Examine supported Ruthenium as a carbon dioxide methanation catalyst to determine the effects support properties have on the active phase by studying activity and selectivity.

RESULTS
The benchmark catalyst, 5%Ru/Al2O3, performed the best with the highest conversion and selectivity as well as the largest temperature of reduction indicating a favorable relationship between this support and the catalyst.

CONCLUSIONS
Selection particle size improves over time – sintering of the smallest Ru particles. Overall particle size increases and some support sintering is possible but not outside possible error for BET. It is surprising that the rutile titania does not perform better as a support. Its superior performance has been documented in previous work.

REFERENCES

ACKNOWLEDGEMENTS
The authors would like to thank Michael Holmes at Iowa State University for his extensive work in preparing catalysts for testing. They would also like to thank Dr. Paul Hintze and Dr. Anthony Muscatello at KSC for their support. This material is based upon work supported by the National Aeronautics and Space Administration under Grant Number NNX16AT24H issued through the NASA Education Minority University Research Education Project (MUREP) through the NASA Harriet G. Jenkins Graduate Fellowship activity.