Percutaneous Drainage Capability for Deep Space Exploration

89th Annual Scientific Meeting of the Aerospace Medical Association

Allen Guehl, MD, DPM, MS
David P. Reyes, MD, MPH, MS
Eric L. Kerstman, MD, MPH
Erik L. Antonsen, MD, PhD
Disclosure Information

AsMA 89th Annual Scientific Meeting

• We have no financial relationships to disclose
• We will not discuss off-label use or investigational uses
Objectives

• Discuss current evidence based capabilities of percutaneous drainage (PCD) for spaceflight
Exploration Medical Capabilities (ExMC)

- Expanding capability beyond LEO
- New challenges
 - No evacuation
 - Communication delays
 - Mass/volume constraints
- Need robust autonomous capabilities

“Evidence Report: Risk of Adverse Health Outcomes and Decrement in Performance due to In-Flight Medical Conditions,” 2017
Percutaneous Drainage

• Drainage of fluid, abscess or air
• Needle or catheter placement
• Often with image guidance
• Benefits
 – Preferred for many conditions
 – Simple
 – Repeatable
 – Minimally invasive
Equipment

• Low mass and volume
• Alternate medical/non-medical uses
• Ultrasound Imaging likely imaging modality
• Ongoing development
 – Flow is reduced at 0G compared to 1G1

1L. Brown, Personal Communication, October, 23, 2017
Equipment

Hanging strap with spring clip
Suction bellows
Luer lock connector
Stretchable connector tube
Double anti-reflux valve system
Graduated collection bag
Empty port (TCS500D, TCS500DS, TCS300D)
Write-on area

Percutaneous Drainage
Training and Currency: MicroG

• Standard sterile technique
• Tubing and equipment tethering
• Altered fluid mechanics
• Abdomen tends to “circularize”¹
• Parabolic flight tests
 – Successful aspiration of intra-peritoneal fluid
 – No more demanding than 1-G rehearsals
 – Fluid collections more distinct from surrounding viscera²

¹Surgical Capabilities for Exploration and Colonization Space Flight,” 2015.
²A W Kirkpatrick et al., 2002
Training and Currency: Deep Space

• Non-physician versus physician astronaut
• Emergency Physicians (ACEP) training guidelines:
 – Sixteen to twenty four hours\(^1\)
• ISS FAST exam trial: successful exam with
 – three hours of familiarization
 – two hours hands on training\(^2\)
 – Non medical crew
• Augmented reality computer based simulations\(^3\)
 – May provide ongoing review and training on mission

\(^1\)Emergency Ultrasound Guidelines, 2009
\(^2\)Sargsyan et al., 2005
\(^3\)Magee et al., 2007
Percutaneous Drainage

• Integrated Medical Model (IMM) conditions:
 • Appendicitis
 • Acute Cholecystitis
 • Chest Injury
 • Abdominal Injury
 • Urinary Retention
 • Hydronephrosis (kidney stone)
Appendicitis

• Percutaneous drainage
 – Only intervention available in ExMC
 – Ruptured appendix and intra-abdominal abscess
 – 64% success rate with US guided drainage\(^1\)

• Recent meta-analysis:
 – Antibiotic treatment comparable to appendectomy
 – 72% antibiotic success rate\(^2\)
 – 14.2 to 20% subsequent surgical appendectomy\(^3\)

• Modification of success rates needed
 – Healthy crew
 – Quick treatment and no surgical option

\(^1\)Fagenholz et al., 2016
\(^2\)Zhi-Hua Liu, 2014
\(^3\)Flum, 2015
Home Remedies for Appendicitis

Castor Oil Remedy

1. Fold a large flannel cloth into layers and pour 2 tbsp castor oil on it.
2. Lie down on an old towel & put the flannel cloths on your abdomen.
3. Repeat this remedy 3 times a week for 2 to 3 months.

To explore more, visit www.Top10HomeRemedies.com
Acute Cholecystitis

- Drainage via perc. transhepatic cholecystostomy
- Can be definitive procedure
- 94 % technical success rate
- 86 % procedural success rate
- US lower complication /death rate versus fluoroscopy

Wagner et al., 2017
Hemothorax/Pneumothorax

• 100% Success with pneumothorax
• 80% Success with loculated pleural effusions\(^1\)
• Successful with different pleural fluids
• Studies found minimal complications
• Significant clinical improvement\(^2\)

\(^1\)Bediwy & Amer, 2012; Liu et al., 2010
\(^2\)Aziz, Penupolu, & Flores, 2012
Abdominal Compartment Syndrome

- Intra-abdominal pressure >12 mm hg
- Possible etiologies in spaceflight\(^1\)
 - Abdominal trauma
 - Hemorrhage
 - Intestinal obstruction
 - Large Burns
- Percutaneous drainage preferred over laporotomy\(^2\)
- PCD is safe and effective in preventing ACS in burn patients\(^3\)

\(^1\)Backer, 1999
\(^2\)Kirkpatrick et al., 2013
\(^3\)Latenser et al., 2002
Urinary Retention

- Suprapubic catheterization safely performed in remote areas by non-physicians\(^1\)
- Study showed suprapubic catheterization to be:
 - Quick procedure
 - High success rate
 - Minimal complications
 - Recommended after 2 or 3 failed transurethral attempts\(^2\)

\(^1\) Gujral, Kirkwood, Hinchliffe, & Gujral, 1999
\(^2\) Bilehjani E & Fakhari S, 2017
Hydronephrosis

- Kidney stone usual cause
- Found in 89% of suspected stone\(^1\)
- US guided placement success rate 96%\(^2\)
- Complete urinary obstruction
 - One week-complete recovery of kidney function
 - Twelve weeks- Non recoverable kidney damage

\(^1\)Song et al., 2016
\(^2\)Lodh et al., 2014
Complications

- Infection
- Bleeding
- Nephrostomy complication rate 10% \(^1\)
- Abdominal PCD complications < 5%
- Bowel puncture with 21 g needle “inconsequential” in most cases\(^2\)

\(^1\)Pabon-Ramos et al., 2016
\(^2\)Lorenz & Thomas, 2006
Further Research

• Risk mitigation
 – Guidance and training
 – Physician-astronaut utilization

• Optimal catheter size and materials

• 3D printing of supplies
PCD Conclusions

• Achievable skill by physician and non-physician
• Small overall resource burden
• Treat surgical conditions that can occur in spaceflight
• Many advantages of a robust procedural capability
• Decreases mission risk
Thank You
References

References

National Aeronautics and Space Administration

Percutaneous Drainage