CORONAL IMAGING WITH THE SOLAR ULTRAVIOLET IMAGER

Sivakumara K. Tadikonda¹, Douglas C. Freesland¹, Robin R. Minor¹, Daniel Seaton², Gustave J. Comeyne¹, Alexander Krimchansky¹

¹GOES-R Flight Project, NASA Goddard Space Flight Center, Greenbelt, MD, USA
²NOAA National Centers for Environmental Information, Boulder, CO, USA
Geostationary Operational Environmental Satellite (GOES-R)

Launched: November 19, 2016
Operational: December, 2017
Nadir-pointed instruments:
- Advance Baseline Imager (ABI)
- Geostationary Lightning Mapper (GLM)
Sun-pointed instruments:
- EUVS and X-ray Irradiance Suite (EXIS)
- Solar UltraViolet Imager (SUVI)
Bus-mounted instruments:
- Space Environment In-Situ Suite (SEISS)
- Magnetometer
Solar UltraViolet Imager (SUVI)

- Generalized Cassegrain Telescope
- Multilayer coated primary and secondary mirrors
- Six channels:
 - 9.4nm, 13.1 nm, 17.1nm, 19.5nm, 28.4nm, 30.4nm
- Entrance and analysis filters for bandpass & OOB rejection
- 53 arcmin x 53 arcmin CCD
- Guide Telescope (GT) provides Sun-pointing information
- Spacecraft controls gimbals with the GT data
Motivation

Observation:
- SUVI image shows significant corona
 - Largest among solar imagers
- No UV coronagraphs

Action:
- Image UV corona up to a few solar radii
- Investigate impacts on spacecraft
- Explore CME detection capability

Implementation:
- Develop an operational concept
Caught on camera: X9 flare

2017 September 10*

Off-points

- Distributed symmetrically around the Sun center
- 17.1 nm & 19.5 nm
- Varying exposures
- Accounts for pointing errors
- Traverse and details shown for 17.1nm. (The path is reversed for 19.5nm; details not shown)

- Executed on February 13, 2018
17.1nm Composite

GOES-16 Preliminary, Non-Operational Data

Solar Wind 15 Conference
19.5nm Composite

Median +/- RMS radial profile of SUVI 195

GOES-16 Preliminary, Non-Operational Data
Refinements

• 17.1 nm vs 19.5 nm
• Exposure duration reduced w/on-chip binning
• Overlap, accounting for pointing errors, reduced to 2 arcmin
• Other off-points: 3 panels vs. 9, stare at an off-point
• Dynamic disturbances on spacecraft reduced
• Operational concept
 • Patrol mode vs on-demand
 • Use other instrument data as predictive tool
• 3-phase execution on GOES-17
Off-points

Final image size: 155 x 114 arcmin
Advantage: Large imaging area

- Covers 4.5x Solar radii in E-W
- 17.1nm and/or 19.5nm
- Fast refresh rate: 4.35 min (single channel)
 - Max observable CME speed: > 6400 Km/s
- ~6 min for two channels
 - 100% of CMEs will be observable

- Overlap in N-S eliminates vignetting
- Covers 3.5x Solar radii in N-S; > 4.5x in E-W
- Refresh rate: 12 min
 - Max observable CME speed: > 3500 Km/s
 - 100% of CMEs will be observable

Final image size: 155 x 53 arcmin
Advantage: Rapid Turnaround

Sun Center

- Covers 4.5x Solar radii in E-W
- 17.1nm and/or 19.5nm
- Fast refresh rate: 4.35 min (single channel)
 - Max observable CME speed: > 6400 Km/s
- ~6 min for two channels
 - 100% of CMEs will be observable
Phase 1 Execution on GOES-17: Reduced Dynamic Disturbances
17.1nm

20180604_131458

GOES-17 Preliminary, Non-Operational Data

20180605_230203
19.5 nm

GOES-17 Preliminary, Non-Operational Data

20180604_131523

20180605_230228
Time lapse movie (freeze frames shown on slides 12 and 13)

The authors gratefully acknowledge the support provided by the Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, USA, team
Next Steps

- Run a patrol mode for 1-2 week period
- Process data and correlate with known events from instruments: EXIS, LASCO CCOR2, SDO/AIA, SOHO, etc.
Conclusion

<table>
<thead>
<tr>
<th>Observed Events, 1996-2005</th>
<th>% of CME Events</th>
<th>Observability in 9 Panel Sequence</th>
<th>Observability in 3 Panel Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Speed CME Events, 200 to 1000 Km/s</td>
<td>7980</td>
<td>96.2%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Mid Speed CME Events, > 1000 to 2000 Km/s</td>
<td>291</td>
<td>3.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>High Speed CME Events, > 2000 to 3400 Km/s</td>
<td>27</td>
<td>0.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>All CMEs</td>
<td>8298</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

EUV Solar Coronal Imaging – new frontier?
Backup
Mid Speed and High Speed CME Velocity Events*

- Mid Speed (> 1000 to 2000 km/sec) and High Speed (> 2000 to 3400 km/sec) CME events are infrequent over a 10 year period. Mid Speed CMEs are only 3.5% of all CMEs, while High Speed CMEs are only 0.3% of all CMEs.

- However, Mid Speed and High Speed CME events are often Geoeffective. The combined number of Mid Speed and High Speed CME events (318) is very close to the combined number of Category G3, G4, and G5 Geomagnetic Storm events (304) over an 11 year Solar Cycle.

<table>
<thead>
<tr>
<th># of Observed Events, 1996-2005</th>
<th>% of CME Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Speed CME Events, 200 to 1000 km/sec</td>
<td>7980</td>
</tr>
<tr>
<td>Mid Speed CME Events, > 1000 to 2000 km/sec</td>
<td>291</td>
</tr>
<tr>
<td>High Speed CME Events, > 2000 to 3400 km/sec</td>
<td>27</td>
</tr>
<tr>
<td>All CMEs</td>
<td>8298</td>
</tr>
</tbody>
</table>

*Naval Research Laboratory