EFFICIENT, LOW PRESSURE RATIO PROPELLOR FOR GAS TURBINE ENGINES

A gas turbine engine includes a gear assembly and a bypass flow passage that includes an inlet and an outlet that define a design pressure ratio between 1.3 and 1.55. A fan is arranged at the inlet. A first turbine is coupled with a first shaft such that rotation of the first turbine will drive the fan, through the first shaft and the gear assembly, at a lower speed than the first shaft. The fan includes a row of fan blades. The row includes 12-16 (N) fan blades, a solidity value (R) that is from 1.0 to 1.3, and a ratio of N/R that is from 10.0 to 16.
Related U.S. Application Data

application No. 13/484,858, filed on May 31, 2012, now Pat. No. 9,121,368, which is a continuation of application No. 13/176,365, filed on Jul. 5, 2011.

(51) Int. Cl.
F02K 3/06 (2006.01)
F01D 5/28 (2006.01)
F01D 5/14 (2006.01)
F01D 15/12 (2006.01)
F04D 29/02 (2006.01)
F04D 29/053 (2006.01)
F04D 29/32 (2006.01)
F04D 29/38 (2006.01)
F04D 29/52 (2006.01)
F04D 29/56 (2006.01)

(52) U.S. Cl.
CPC F02K 1/06 (2013.01); F02K 3/06 (2013.01); F04D 29/023 (2013.01); F04D 29/053 (2013.01); F04D 29/325 (2013.01); F04D 29/526 (2013.01); F04D 29/563 (2013.01); F05D 2220/32 (2013.01); F05D 2220/327 (2013.01); F05D 2220/363 (2013.01); F05D 2260/4031 (2013.01); F05D 2300/603 (2013.01); Y027 50/672 (2013.01)

(53) Field of Classification Search
CPC F02C 7/36; F05D 2260/4031; F05D 2220/327; F05D 2300/603
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
3,747,343 A 7/1973 Rosen
3,754,484 A 8/1973 Roberts
3,892,358 A 7/1975 Gisslen
4,130,872 A 12/1978 Harloff
4,486,146 A 12/1984 Campion
4,885,912 A * 12/1989 Nakahmkin F02C 1/06 60/562
5,433,674 A 7/1995 Sheridan et al.
5,524,847 A 6/1996 Brodell et al.
5,778,659 A 7/1998 Dazeler et al.
5,915,917 A 6/1999 Evker et al.
5,975,841 A 11/1999 Lindeomuth et al.
6,004,095 A 12/1999 Watz et al.
6,188,903 B1 3/2001 Wada et al.
6,223,561 B1 5/2001 Sheridan
6,318,070 B1 11/2001 Rey et al.
6,709,239 B2 3/2004 Chandraker
6,814,541 B1 11/2004 Evans et al.
7,021,042 B1 4/2006 Law
7,374,403 B2 5/2008 Decker et al.
7,770,377 B2 8/2010 Rolt
7,824,305 B2 11/2010 Duong et al.
8,205,432 B2 6/2012 Sheridan
8,667,775 B1 3/2014 Kisska et al.
8,009,553 A1 4/2008 Wilson
8,015,596 A1 7/2008 Johnson
8,022,644 A1 9/2008 Decker et al.

FOREIGN PATENT DOCUMENTS
GB 2041090 9/1980
GB * 2426792 12/2006
WO 2015034630 3/2015
WO 2015047511 4/2015

OTHER PUBLICATIONS
References Cited

* cited by examiner
EFFICIENT, LOW PRESSURE RATIO
PROPELLOR FOR GAS TURBINE ENGINES

CROSS REFERENCE TO RELATED APPLICATIONS

The present disclosure is a continuation of U.S. application Ser. No. 14/695,373, filed Apr. 24, 2015, which is a continuation-in-part of U.S. application Ser. No. 13/484,858, filed May 31, 2012, which is a continuation of U.S. application Ser. No. 13/176,365, filed Jul. 5, 2011.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under contract number NAS3-01138 awarded by NASA. The government has certain rights in the invention.

BACKGROUND

This disclosure relates to gas turbine engines and, more particularly, to an engine having a geared turbofan architecture that is designed to efficiently operate with a high bypass ratio and a low pressure ratio.

The overall propulsive efficiency and fuel burn of a gas turbine engine depends on many different factors, such as the design of the engine and the resulting performance properties of the fan that propels the engine. As an example, the fan rotates at a high rate of speed such that air passes over the blades at transonic or supersonic speeds. The fast-moving air creates flow discontinuities or shocks that result in irreversible propulsive losses. Additionally, physical interaction between the fan and the air causes downstream turbulence and further losses. Although some basic principles behind such losses are understood, identifying and changing appropriate design factors to reduce such losses for a given engine architecture has proven to be a complex and elusive task.

SUMMARY

A gas turbine engine according to an example of the present disclosure includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio of between about 1.2 or 1.3 and about 1.7 across the propulsor blades.

In a further embodiment of any of the foregoing embodiments, the pressure ratio is between about 1.3 and about 1.4.

In a further embodiment of any of the foregoing embodiments, each of the propulsor blades extends radially between a root and a tip and in a chord direction between a leading edge and a trailing edge at the tip to define a chord dimension (CD). The row of propulsor blades defines a circumferential pitch (CP) with regard to the tips. The row of propulsor blades has a solidity value (R) defined as CD/CP that is between about 0.9 or 1.0 and about 1.3.

In a further embodiment of any of the foregoing embodiments, the propulsor is coupled to be driven by a turbine through a spool, and a gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool.

In a further embodiment of any of the foregoing embodiments, the propulsor blades include a carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the polymer of the carbon-fiber reinforced polymer matrix material is a thermoplastic polymer.

In a further embodiment of any of the foregoing embodiments, the propulsor blades each further comprise a sheath on a leading edge thereof.

In a further embodiment of any of the foregoing embodiments, each of the propulsor blades includes a first distinct region of carbon-fiber reinforced polymer matrix material and a second distinct region of a non-carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the propulsor blades each include a distinct core that supports a skin of carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the skin of carbon-fiber reinforced polymer matrix material has a three-dimensional fiber structure.

In a further embodiment of any of the foregoing embodiments, the core is formed of a metallic material.

In a further embodiment of any of the foregoing embodiments, the propulsor is coupled to be driven by a turbine through a spool, and a gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool.

In a further embodiment of any of the foregoing embodiments, the propulsor blades each further comprise a sheath on a leading edge thereof.

In a further embodiment of any of the foregoing embodiments, each of the propulsor blades includes a first distinct region of carbon-fiber reinforced polymer matrix material and a second distinct region of a non-carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the propulsor blades each include a distinct core that supports a skin of carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the skin of carbon-fiber reinforced polymer matrix material has a three-dimensional fiber structure.

In a further embodiment of any of the foregoing embodiments, the core is formed of a metallic material.

In a further embodiment of any of the foregoing embodiments, the propulsor blades include a carbon-fiber reinforced polymer matrix material. The propulsor blades each include an airfoil body that has a distinct core that supports a skin of the carbon-fiber reinforced polymer matrix material, and a sheath secured on a leading edge of the airfoil body.

In a further embodiment of any of the foregoing embodiments, wherein the carbon-fiber reinforced polymer matrix material of the propulsor blades is different from the carbon-fiber reinforced polymer matrix material of the case with respect to composition.

In a further embodiment of any of the foregoing embodiments, the row includes no more than 17 of the propulsor blades.

In a further embodiment of any of the foregoing embodiments, the propulsor blades each include a distinct core that supports a skin of the carbon-fiber reinforced polymer matrix material.

In a further embodiment of any of the foregoing embodiments, the fiber reinforced polymer matrix material of the case includes carbon fibers.

A gas turbine engine according to an example of the present disclosure includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio of between about 1.2 or 1.3 and about 1.7 across the propulsor blades.

In a further embodiment of any of the foregoing embodiments, the pressure ratio is between about 1.3 and about 1.4.

In a further embodiment of any of the foregoing embodiments, each of the propulsor blades extends radially between a root and a tip and in a chord direction between a leading edge and a trailing edge at the tip to define a chord dimension (CD). The row of propulsor blades defines a circumferential pitch (CP) with regard to the tips. The row of propulsor blades has a solidity value (R) defined as CD/CP that is between about 0.9 or 1.0 and about 1.3.

In a further embodiment of any of the foregoing embodiments, the propulsor is coupled to be driven by a turbine through a spool, and a gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool.

In a further embodiment of any of the foregoing embodiments, the propulsor blades include a carbon-fiber reinforced polymer matrix material.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of the disclosed examples will become apparent to those skilled in the art.
from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

FIG. 1 is a schematic cross-section of an embodiment of a gas turbine engine.

FIG. 2 is a perspective view of a fan section of the engine of FIG. 1.

FIG. 3 illustrates an embodiment of a carbon-fiber reinforced polymer matrix material.

FIG. 4 illustrates an embodiment of a two-dimensional woven fiber structure.

FIG. 5 illustrates an embodiment of a three-dimensional fiber structure.

FIG. 6 is a cross-section of an embodiment of a propulsor blade that has a distinct core and a skin of carbon-fiber reinforced polymer matrix material.

FIG. 7 illustrates an embodiment of a propulsor blade that has a sheath.

FIG. 8 illustrates a portion of an embodiment of a case and propulsor blade.

FIG. 9 illustrates another embodiment of a case.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 may be a two-spool turboshaft that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engine architectures may include a single-spool design, a three-spool design, or an open rotor design, among other systems or features.

The fan section 22 drives air along a bypass flow passage B while the compressor section 24 drives air along a core flow passage C for compression and communication into the combustor section 26. Although depicted as a turboshaft gas turbine engine, it is to be understood that the concepts described herein are not limited to use with turboshafts and the teachings may be applied to other types of gas turbine engines.

The engine 20 includes a low speed spool 30 and high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. The low speed spool 30 generally includes an inner shaft 40 that is coupled with a propulsor 42, a low pressure compressor 44 and a low pressure turbine 46. The high speed spool 32 includes a rotor 70 having a row 72 of propulsor blades 74 that extends a circumferentially around a hub 76. Each of the propulsor blades 74 defines a solidity value with a particular design pressure ratio. In embodiments, the number N of propulsor blades 74 and a geometry that, in combination with the architecture of the engine 20, provides enhanced overall propulsive efficiency by reducing performance debits of the propulsor 42.

In the illustrated example, the number N of propulsor blades 74 in the row 72 is no more than 20. In one example, the propulsor 42 includes 18 of the propulsor blades 74 uniformly circumferentially arranged about the hub 76. In other embodiments, the number N may be any number of blades from 12-20.

The propulsor blades 74 define a solidity value with regard to the chord dimension CD and the circumferential pitch CP. The solidity value is defined as a ratio (R) of CD/CP (i.e., CD divided by CP). In embodiments, the solidity value of the propulsor 42 is between 0.9 or 1.0 and 1.3. In further embodiments, the solidity value is from 1.1 to 1.2. In additional embodiments, the solidity value is less than 1.1, and in a further example is also greater than 0.85. Additionally, in combination with the given example solidity values, the fan 22 of the engine 20 may be designed with a particular design pressure ratio. In embodiments, the design pressure ratio may be between 1.2 or 1.3 and 1.55. In a further embodiment, the design pressure ratio may be between 1.3 and 1.7.

The engine 20 may also be designed with a particular bypass ratio with regard to the amount of air that passes through the bypass flow passage B and the amount of air that passes through the core flow passage C. As an example, the design bypass ratio of the engine 20 may nominally be 12, or alternatively in a range of approximately 8.5 to 13.5 or 18. The propulsor 42 also defines a ratio of N/R. In embodiments, the ratio N/R is from 9 to 20. In further embodiments, the ratio N/R is from 14 to 16. The table below shows additional examples of solidity and the ratio N/R for different numbers of propulsor blades 74.
The disclosed ratios of N/R enhance the overall propulsive efficiency and fuel burn of the disclosed engine. For instance, the disclosed ratios of N/R are designed for the geared turbofan architecture of the engine that utilizes the gear assembly. That is, the gear assembly allows the propulsor to rotate at a different, lower speed than the low speed spool. In combination with the variable area nozzle, the propulsor can be designed with a large diameter and rotate at a relatively slow speed with regard to the nozzle. A relatively low speed, relatively large diameter, and the geometry that permits the disclosed ratios of N/R contribute to the reduction of performance degradations, such as by lowering the speed of the air or fluid that passes over the propulsor blades.

The propulsor blades can include a carbon-fiber reinforced polymer matrix material, an example portion of which is depicted in FIG. 3 at 86. In this example, the material includes carbon fibers that are disposed in a polymer matrix. The propulsor blades can be formed exclusively of the material or partially of the material in combinations with alloys or other fiber-reinforced materials.

The material can include a plurality of carbon fiber layers that are stacked and consolidated to form the material. For example, the fiber layers can each have unidirectionally oriented fibers and the layers can be cross-plied. In further examples, one or more of the layers has a different fiber structure, such as but not limited to, random fiber orientation, woven, or three-dimensional. An example two-dimensional woven fiber structure is depicted in FIG. 4. An example three-dimensional fiber structure is depicted in FIG. 5. In this example, the fibers are woven into sheets, and transverse fibers bundle the sheets to one another. As can be appreciated, other two- or three-dimensional fiber structures could alternatively or additionally be used.

The polymer matrix can include thermoplastic polymer, thermoset polymer, or combinations thereof. Thermoset polymers can include, but are not limited to, epoxy and phenolic. Thermoplastic polymers can include, but are not limited to, polyethylenes, polyarylethers, and poly ketones. In further examples, the carbon fibers have an average diameter of less than 1 micrometer. Alternatively, the fibers are nano-sized and have a diameter of less than 1 micrometer. In other examples, the carbon fibers are carbon-containing such that the fibers include carbon as a primary constituent or element. In one example, the carbon fibers are carbide.

FIG. 6 illustrates a cross-sectional view of another example propulsor blade 174, which may include any of the aforementioned features. In this example, the propulsor blade 174 includes a distinct core 174a that supports a skin 174b of the carbon-fiber reinforced polymer matrix material. In this example, the core 174a is a solid piece, but it alternatively can be hollow to reduce weight.

The core can be formed of a metallic material, a fiber reinforced polymer matrix material, or combinations thereof. An example metallic material includes a titanium-based alloy. The fiber reinforced polymer matrix material can include carbon fiber, as in any of the examples of the material. Alternatively, the fibers in the core are non-carbon fibers. Example non-carbon fibers can include, but are not limited to, glass fibers, metallic fibers, ceramic fibers, polymeric fibers, and combinations thereof.

In further examples, the core 174 is formed of a fiber-reinforced material that is different in composition from the material. The difference in composition can be in the kinds of polymers of the matrices, the kinds of fibers, the amounts of the polymer matrices, the amounts of the fibers, or any combination of such differences.

In further examples, the skin is the multi-layered structure of the material. For example, layers can be laid-up or around the core and then consolidated. Alternatively, the skin is a continuous sleeve. The core is inserted into the sleeve and then the skin is consolidated. In one further example, the material of the sleeve has a three-dimensional fiber structure.

FIG. 7 illustrates another example propulsor blade that is formed of the material. In this example, the propulsor blade also includes a sheath on a leading edge of the blade. For example, the sheath protects the propulsor blade from foreign object impact. In one example, the sheath is formed of a metallic material. The metallic material can include, but is not limited to, a titanium-based alloy, a cobalt-based alloy, or combinations thereof. In further examples, the sheath is multi-layered and includes at least one layer of a metallic material. One or more additional layers can include a layer of a metallic material of a different composition, a layer of a polymer-based material, or combinations thereof.

The sheath is secured to the leading edge of the propulsor blade. In this regard, the sheath can be bonded using an adhesive, mechanically attached to the blade, or secured by a combination of adhesive bonding and mechanical attachment.
In a further example, the propulsor blade 274 includes a first distinct region 289a (outside of dashed line region) of carbon-fiber reinforced polymer matrix material 86 and a second distinct region 289b (inside dashed line region) of a non-carbon-fiber reinforced polymer matrix material. The non-carbon fibers can include, but are not limited to, glass fibers, aramid fibers, boron fibers, carbide fibers, or combinations thereof. The second distinct region 289b of a carbon-fiber reinforced polymer matrix material provides the ability to locally tailor the performance of the propulsor blade 274 with regard to properties. For example, the vibrational properties are locally tailored through selection of the properties of the second distinct region 289b to control vibration or control response to an impact event.

FIG. 8 illustrates selected portions of the fan section 22 of the engine 20, including the case 43 and a portion of one of the propulsor blades 74. The case 43 serves as a containment structure in the case of a blade release event. For example, the case 43 includes a fiber reinforced polymer matrix material 45. The material 45 includes fibers 45c that are disposed in a polymer matrix 45b. The fibers 45c can be carbon fibers or non-carbon fibers. Non-carbon fibers can include, but are not limited to, glass fibers, aramid fibers, or combinations thereof. In one example, the material 45 includes a plurality of fiber layers 45c that are stacked and consolidated to form the material 45. For example, all of the layers 45c have the same kind of fibers. In other examples, alternating layers 45c, or an alternating pattern of layers 45c, have different kinds of fibers, one of which is carbon fibers.

In further examples, the carbon-fiber reinforced polymer matrix material 86 of the propulsor blades 74 is different from the carbon-fiber reinforced polymer matrix material 45 of the case 43 with respect to composition. The difference in composition can be in the kinds of polymers of the matrices, the kinds of fibers, the amounts of the polymer matrices, the amounts of the fibers, or any combination of such differences. Further, the differences can be tailored for thermal conformance between the propulsor blades 74 and the case 43.

FIG. 9 illustrates another example case 143 that includes a layer of the material 45 adjacent a layer 147. The layer 147 can be a layer of carbon-fiber reinforced polymer matrix material, non-carbon-fiber reinforced polymer matrix material, or metallic material, such as in a honeycomb or acoustic structure.

Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.

The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.

What is claimed is:

1. A gas turbine engine comprising:
 - a gear assembly;
 - a bypass flow passage, the bypass flow passage including an inlet and an outlet which define a design pressure ratio with regard to an inlet pressure at the inlet and an outlet pressure at the outlet at a design rotational speed of the engine, the design pressure ratio being between 1.3 and 1.55;
 - a fan arranged within the bypass flow passage;
 - a first shaft and a second shaft;
 - a first turbine coupled with the fan through the first shaft and the gear assembly; and
 - a second turbine coupled with the second shaft;
 - wherein the fan includes a hub and a row of fan blades that extend radially outwardly from the hub and the row includes a number (N) of fan blades that is from 12 to 16, a solidity value (R) at tips of the fan blades that is from 1.0 to 1.3, and a ratio of N/R that is from 10.0 to 16.

2. The gas turbine engine as recited in claim 1, wherein the second turbine is a 2-stage turbine.

3. The gas turbine engine as recited in claim 2, further comprising a first compressor located between the first turbine and the gear assembly.

4. The gas turbine engine as recited in claim 3, wherein the first compressor is a 3-stage compressor and is coupled with the first shaft.

5. The gas turbine engine as recited in claim 3, wherein the number (N) of fan blades is 16, and the solidity value (R) at the tips of the fan blades is from 1.0 to 1.2.

6. The gas turbine engine as recited in claim 3, wherein the number (N) of fan blades is 14, and the solidity value (R) at the tips of the fan blades is from 1.0 to 1.1.

7. The gas turbine engine as recited in claim 2, further comprising a variable area nozzle, and wherein each fan blade is fixed in position between the hub and the tip.

8. The gas turbine engine as recited in claim 7, wherein the design pressure ratio is defined with the variable area nozzle fully open.

9. The gas turbine engine as recited in claim 6, wherein the fan blades include a carbon-fiber reinforced polymer matrix material.

10. The gas turbine engine as recited in claim 9, wherein the fan blades further include a three-dimensional fiber structure.

11. The gas turbine engine as recited in claim 10, wherein the carbon-fiber has an average diameter of 1-100 micrometers.

12. The gas turbine engine as recited in claim 9, further comprising a case surrounding the fan, the case including a carbon-fiber reinforced polymer matrix material.

13. The gas turbine engine as recited in claim 12, wherein the case further includes glass fiber, aramid fiber, or combinations thereof.

14. The gas turbine engine as recited in claim 13, wherein the carbon-fiber reinforced polymer matrix material of the fan blades and the carbon-fiber reinforced polymer matrix material of the case each include a polymer and a fiber, and the carbon-fiber reinforced polymer matrix material of the fan blades is different from the carbon-fiber reinforced polymer matrix material of the case in one or more of the kinds of polymers of the matrices, or the kinds of fibers.

15. The gas turbine engine as recited in claim 3, wherein the number (N) of fan blades is 12, and the solidity value (R) at the tips of the fan blades is from 1.0 to 1.1.

16. A gas turbine engine comprising:
 - a gear assembly;
 - a bypass flow passage and a core flow passage, the bypass flow passage including an inlet;
 - a fan arranged within the bypass flow passage;
 - a first shaft and a second;
a first turbine coupled with the fan through the first shaft and the gear assembly; and
a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;
wherein the fan includes a hub and a row of fan blades that
extend from the hub, and the row includes a number
(N) of the fan blades that is from 14 to 16, a solidity
value (R) at tips of the fan blades that is from 1.0 to 1.3,
and a ratio of N/R that is from 11.7 to 16.

17. The gas turbine engine as recited in claim 16, wherein
the number (N) of fan blades is 16, the solidity value (R) at
the tips of the fan blades is from 1.0 to 1.2.

18. The gas turbine engine as recited in claim 17, wherein
the bypass flow passage further includes an outlet, the inlet
and the outlet define a design pressure ratio with regard to
an inlet pressure at the inlet and an outlet pressure at the
outlet at a design rotational speed of the engine, and the
design pressure ratio is between 1.3 and 1.55.

19. The gas turbine engine as recited in claim 18, wherein
the design pressure ratio is between 1.3 and 1.4.

20. The gas turbine engine as recited in claim 16, further
comprising a first compressor located between the first
turbine and the gear assembly, and wherein the number (N)
of fan blades is 14, and the solidity value (R) at the tips of
the fan blades is from 1.0 to 1.1.

21. The gas turbine engine as recited in claim 20, further
comprising a case surrounding the fan, wherein:
the fan blades include a carbon-fiber reinforced polymer
matrix material;
the carbon-fiber reinforced polymer matrix material of the
fan blades and the carbon-fiber reinforced polymer
matrix material of the case each include a polymer and a
fiber, and the carbon-fiber reinforced polymer matrix
material of the fan blades is different from the carbon-
fiber reinforced polymer matrix material of the case in
one or more of the kinds of polymers of the matrices,
or the kinds of fibers.

22. A gas turbine engine comprising:
a gear assembly;
a bypass flow passage and a core flow passage;
a fan arranged within the bypass flow passage;
a first shaft and a second shaft;
a first turbine coupled with the fan through the first shaft
and the gear assembly; and
a second turbine coupled with the second shaft, wherein
the second turbine is a 2-stage turbine;
wherein the fan includes a hub and a row of fan blades that
extend radially outwardly from the hub, and the row
includes a number (N) of the fan blades that is from 12
to 14 and a solidity value (R) at tips of the fan blades
that is from 1.0 to 1.2.

23. The gas turbine engine as recited in claim 22, wherein
a ratio of N/R is from 10.9 to 14.0.

24. The gas turbine engine as recited in claim 23, wherein
the number (N) of fan blades is 12.

25. The gas turbine engine as recited in claim 23, wherein
the number (N) of fan blades is 14, and the ratio of N/R is
from 12.7 to 14.0.