IAC-17.D2.3.2

DEVELOPMENT OF THE EUROPEAN SERVICE MODULE PROPULSION SUBSYSTEM FOR THE MULTI-PURPOSE CREW VEHICLE

Stephen Barsi, Kevin Dickens, Matthew Bielozer, and Jon Millard

NASA Glenn Research Center, Cleveland, Ohio, USA
Background

- **Orion/MPCV the future of human spaceflight beyond LEO**

- **Major Elements of Orion**
 - ESM (Airbus)
 - CMA (Lockheed)
 - CM (Lockheed)
 - SA (Lockheed)
 - LAS (Lockheed)

- **Major Milestones**
 - May 2011: Study Phase
 - November 2012: Decision for ESM
 - May 2014: System PDR
 - November 2014: PSS PDR
 - February 2016: PSS CDR
 - June 2016: System CDR
 - August 2017: Initiation of PQM Tests
Propulsion Subsystem (PSS) Description

- Pressure-fed, bi-propellant propulsion system
- Uses MMH and NTO (MON-3)
- Usable Propellant: 8,602 kg (18,964 lbm)
- 4 metallic propellant tanks, 2 per propellant type, plumbed serially
- 2 Composite Overwrap Pressure Vessel (COPV) helium bottles, 1 per commodity
- 3 classes of engines, all supplied from common propellant storage
 - 1 Main Engine with Thrust Vector Control (TVC)
 - 8 Auxiliary Engines, one string
 - 24 RCS Engines, 2 redundant strings, 6 pods
PSS Development Approach

• Hardware Heritage
 – Schedule limitations and budget constraints drove the need for extensive use of heritage hardware designs
 – In some cases flight hardware reuse (from Shuttle) was required, and will be delta-qualified for use on Orion (e.g., Orbital Maneuvering System (OMS) Engine, TVC)

• Primary sources of heritage:
 – ATV
 – Shuttle
 – Orion Crew Module (CM) Propulsion Subsystem (PSS)
 – Ariane 5 Hypergolic Upper Stage (EPS)

• Targeted Development Testing
 – Component development testing was performed to address the highest risk areas of heritage design compliance with Orion requirements
 – Assembly level development testing was performed to understand complex assemblies and component interactions
Orbital Maneuvering System Engine (OMS-E)

- **Heritage**
 - Direct re-use of assets from Shuttle Orbiters, all assets have varying flight history

- **Basic Specifications:**
 - Thrust: 6000 lbf
 - Isp (min): 310 sec
 - MR: 1.65
 - Nozzle area ratio: 55:1

- **Orion Use**
 - Used by Orion for major translational maneuvers

- **Design Changes (only as required)**
 - Redundant chamber pressure measurement and 2nd fuel injector temperature sensor
 - Heater kit (on TCA nozzle)
 - New harnesses
Thrust Vector Control (TVC)

• Heritage
 – Direct re-use of assets from Shuttle Orbiters, all assets have varying flight history

• Orion Use
 – Used by Orion to gimbal the main engine during major translational maneuvers

• Development Testing
 – Random vibration on controller box (lead to card retention design mod)

• Design Changes (only as required)
 – Circuit board retention in controller box (single instance from Shuttle flight history)
 – New, longer harnesses
Auxiliary (Aux) Engines

• Basic Specs
 – (8) fixed position engines
 – Thrust: 105 lbf
 – Nozzle area ratio: 164:1

• Orion Use
 – Nominally used for separation maneuvers and mid-course correction maneuvers
 – In contingency scenario (failed main engine), used for major translational maneuvers
 • Drives the need for long continuous duration firing
 • Drives the need for off-pulsing (to steer)
 • Control authority requires 50% duty cycle

• Development Testing
 – Random Vibration (added vibration isolation bracket)
 – Hot fire, duty cycle (changed MR)
Reaction Control System (RCS) Thrusters

- **Basic Specs**
 - (24) engines, two redundant strings of 12 engines each
 - Packaged in 6 pods of 4 engines each

- **Orion Use**
 - Used for attitude control, rendezvous, and proximity operations

- **Development Testing**
 - Hot fire, 5 Hz command frequency (PT thermal issue)
Qualification Testing – Propulsion Qualification Model (PQM)

- System level qualification test to be performed at WSTF in Test Stand 301
 - Sea level test stand for hypergolic system testing
 - Self-pumping diffuser added for OMS-E
- Flight like configuration with some exceptions:
 - Non-flight prop tanks (without PMD’s)
 - Single string of RCS thrusters
 - One string of valves per PCA
 - Partial representation of helium cross feed system
- Will complete PSS design qualification by test. Requirements verification that could not be accomplished at a lower level
- Will provide insight into complex system interactions and will also be used for anchoring of analytical models
Summary and Conclusions

• Major design milestones are complete (PDR, CDR). The ESM design meets Orion requirements and is ready for hardware manufacturing and assembly

• Heavy reliance on heritage hardware designs allowed for an expedited design/development schedule within the available budget

• Targeted component and assembly-level development testing were used to buy down the areas of highest risk
Backup
Heritage Designs and Development Testing

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier</th>
<th>Heritage</th>
<th>Dev Testing</th>
<th>Test Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMS-E</td>
<td>Aerojet</td>
<td>Shuttle</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>TVC</td>
<td>Honeywell</td>
<td>Shuttle</td>
<td>Yes</td>
<td>Vibe (controller)</td>
</tr>
<tr>
<td>Auxiliary Engines</td>
<td>Aerojet</td>
<td>Apollo, ATV, HTV, …</td>
<td>Yes</td>
<td>Vibe, Duty Cycle</td>
</tr>
<tr>
<td>RCS Engines</td>
<td>Airbus</td>
<td>ATV</td>
<td>Yes</td>
<td>Command Freq.</td>
</tr>
<tr>
<td>Helium Bottles</td>
<td>Airbus</td>
<td>ATV, Ariane 5 EPS</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Helium Filter</td>
<td>Sofrance</td>
<td>Ariane 5 EPS</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>High Pressure Gas Latch Valves</td>
<td>VACCO</td>
<td>Shuttle</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Pyro Valves</td>
<td>Cobham</td>
<td>Orion CM</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Propellant Tanks</td>
<td>Airbus</td>
<td>OST23</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Tank PMD’s</td>
<td>Airbus</td>
<td>ATV, OST1, OST2</td>
<td>Yes</td>
<td>Vibe (dry)</td>
</tr>
<tr>
<td>BDRV</td>
<td>RDI</td>
<td>Orion CM</td>
<td>Yes</td>
<td>Design Scaling</td>
</tr>
<tr>
<td>MLIV</td>
<td>VACCO</td>
<td>Orion CM</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>ABIV</td>
<td>Airbus</td>
<td>ATV</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>RBIV</td>
<td>Airbus</td>
<td>ATV</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>BRV</td>
<td>Airbus</td>
<td>ATV</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>ABPF</td>
<td>VACCO</td>
<td>ATV</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>PDE</td>
<td>Airbus</td>
<td>ATV</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>PRU</td>
<td>Airbus</td>
<td>None</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>